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Abstract

Attractors play a key role in a wide range of processes including learning and memory. Due

to recent innovations in recording methods, there is increasing evidence for the existence of

attractor dynamics in the brain. Yet, our understanding of how these attractors emerge or

disappear in a biological system is lacking.

By following the spontaneous network bursts of cultured cortical networks, we are able to

define a vocabulary of spatiotemporal patterns and show that they function as discrete

attractors in the network dynamics. We show that electrically stimulating specific attractors

eliminates them from the spontaneous vocabulary, while they are still robustly evoked by

the electrical stimulation. This seemingly paradoxical finding can be explained by a Heb-

bian-like strengthening of specific pathways into the attractors, at the expense of weakening

non-evoked pathways into the same attractors. We verify this hypothesis and provide a

mechanistic explanation for the underlying changes supporting this effect.

Author summary

There are many hints that could evoke the same memory. There are many chains of evi-

dence that could lead to the same decision. The mathematical object describing such

dynamics is called an attractor, and is believed to be the neural basis for many cognitive

phenomena. In this study, we aimed to deepen our understanding of the existence and

plasticity of attractors in the dynamics of a biological neural network. We explored the

spontaneous activity of cultured neural networks and identified a set of patterns that func-

tion as discrete attractors in the network dynamics. To understand how these attractors

evolve, we stimulated the network to repeatedly visit some of them. Surprisingly, we

observed that the stimulated patterns became less common in the spontaneous activity,

while still being reliably evoked by the stimulation. This paradoxical finding was explained

by the strengthening of specific pathways leading to these attractors, alongside the weak-

ening of other pathways. These findings provide valuable insights into the mechanisms

underlying attractor plasticity in biological neural networks.
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Introduction

Attractors are important elements in many cognitive processes such as memory formation and

decision-making. These attractors are considered to arise from the dynamics of neuronal net-

works in the brain, which allow for the emergence of stable states that can persist over time.

For instance, head-direction circuits need to integrate body motion over time, consistent with

continuous attractor dynamics [1, 2]. Working memory of discrete [3] or continuous [4] infor-

mation was hypothesized to be supported by attractors [5]. Decision-making can be inter-

preted as convergence to a discrete set of attractors [6], and many other examples exist [7].

Nevertheless, despite their key role in brain function, the mechanisms underlying the genera-

tion of such attractors and their evolution over time remain largely unknown.

To address this challenge, we focus on the relationship between spontaneous and evoked

activity [8]. Attractors, as the name implies, attract neural activity from nearby starting points

into a common trajectory. This set of initial conditions is known as a basin of attraction. If

attractor dynamics are relevant for behavior, one would expect external stimuli to lead neural

activity into one of these basins. Similarly, it is reasonable to expect spontaneous activity to

occasionally land into one of the basins, and hence result in the activation of attractors. In line

with these expectations, there have been reports of spontaneous reactivations that are similar

to evoked activity [9–11].

We studied this question in a more controlled setting—using in-vitro cultured cortical neu-

rons. These networks can sustain both spontaneous [12] and evoked [13] activity, and allow

continuous monitoring over many hours. Furthermore, it was shown that structured stimula-

tion can lead to learning in such networks [14].

In this paper, we show that the spontaneous activity of in-vitro cortical networks contains a

vocabulary of spatiotemporal patterns that act as discrete transient attractors. Discreteness is

manifested by the finite number of such patterns that repeat over time. We show that nearby

initial conditions lead to the same pattern, consistent with basins of attraction. These attractors

are transient, as these network bursts are of limited duration, and the network relaxes to a qui-

escent state following each burst. Furthermore, we demonstrate that specific localized stimula-

tion can generate robust evoked responses from this vocabulary of attractors. We also show

that prolonged stimulation of these specific attractors leads to their elimination from the spon-

taneous vocabulary, while still being robustly evoked by the stimulation.

This work provides the first direct evidence for the plasticity of multiple attractors in a bio-

logical neural network. In addition, the plasticity principles described in the paper improve

our understanding of how attractors in a biological system evolve. This study sheds light on

the mechanisms underlying attractor dynamics in the brain and offers a new perspective on

how they can be manipulated.

Results

To study attractor dynamics, we use extracellular recordings of mature networks of cultured

cortical neurons (18–21 DIV, see Methods). Electrical activity is recorded from a multi-elec-

trode array (MEA) of 120 electrodes on which the neurons are plated (Fig 1A). Throughout

the following sections, we will demonstrate the results using one example experiment, and

show statistics across all experiments. Further details regarding all experiments are in the

methods section.

Spontaneous vocabulary as attractor dynamics

One of the main characteristics of the activity of cultured neuronal networks is the presence of

spontaneous synchronized bursts (network bursts) [15–17], in which a large fraction of the
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neurons fire almost simultaneously within a few hundred milliseconds (Fig 1B). We follow the

spontaneous activity of matured cultured cortical neuronal networks, focusing on these burst-

ing events. To do so, we record multi-unit activity from an array of 120 electrodes (Fig 1B, bot-

tom). We define these network bursts based on the summed activity across all electrodes (Fig

1B, top), beginning with a threshold-crossing, and ending when the same threshold is crossed

again. A burst can be described as a spatiotemporal pattern (Fig 1B, heat-map), or as a trajec-

tory in the 120-dimensional space of the neural activity. For visualization purposes, we take

advantage of the physical ordering of the electrodes, and project these trajectories to a natural

two-dimensional space (Fig 1A)—the physical location of the activity’s center of mass (Fig 1B,

rightmost plot). Cultured networks emitted such bursts at a rate of 8 ± 4 per minute (see Tables

1 and 2). Although a large fraction of the electrodes are recruited by every burst, they are not

all alike. We noticed that each network has its own repertoire of such spatiotemporal patterns

—a finite set of network bursts that repeat many times spontaneously (Fig 2C).

Looking more closely at these bursts reveals attractor-like dynamics: Similar initial condi-

tions lead to similar bursts. To see this, we define the initial condition of a burst as the spatial

activity at the moment of threshold crossing—a vector in 120 dimensions. For a pair of bursts,

we can measure the similarity of initial conditions by correlating these vectors. We can also

Fig 1. Network burst extraction. (A) Electrode layout in the MEA. The 120 electrodes are arranged in a 12x10 array, spaced 1mm vertically and

1.5mm horizontally. See Methods for more details. (B) The activity of all electrodes (bottom-left) is summed into a one-dimensional time series

(top-left). A threshold is used to define a burst (red line). The analysis is done after smoothing and binning the data, to get a continuous time

series for each electrode (heatmap, see Methods). For visualization only, we use the center of mass (COM) representation in the MEA physical

space (10x12 electrodes)—the axes represent the electrodes’ indices (rightmost plot, circle denotes initial state. See Methods).

https://doi.org/10.1371/journal.pcbi.1011784.g001

Table 1. Stimulation experiments. A detailed description of every column can be found in the methods.

Before stimulation After stimulation

MEA # Prep date Age (DIV) Bursts/hour # of clusters % Explained Stimulated existence (out of 3) Bursts/hour # of clusters % Explained

26550 1.11 19 260 9 85 3 530 8 83

26549 8.11 20 292 14 98 1 651 11 97

38428 17.11 18 274 18 95 1 686 20 85

38427 1.11 20 694 13 87 2 739 14 92

26532 2.3 20 497 16 89 1 463 16 87

26550 3.5 19 617 17 93 1 563 18 89

38426 2.11 19 691 14 90 1 688 19 92

26549 11.11 19 679 7 66 1 605 8 98

26550 15.11 20 626 18 97 2 647 10 95

N/A 8.11 21 548 12 89 2 607 7 88

38428 20.2 21 301 7 96 3 392 8 94

https://doi.org/10.1371/journal.pcbi.1011784.t001
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measure the similarity between entire bursts, by flattening them and then obtaining a correla-

tion coefficient (2D correlation, see Methods). Repeating this for all burst pairs allows us to

look at the joint distribution of these two measures (Fig 2A). We find that this distribution is

bimodal, allowing us to define a threshold on the similarity of initial conditions (θ, horizontal

dashed line) that will lead to similar overall bursts (vertical dashed line). Note that θ is a net-

work-specific threshold, depending on the distribution. Conversely, we see that most pairs of

bursts are much less similar—indicating the presence of more than one attractor. Further sup-

port to the attractor dynamics is given by the convergence of similar bursts over time. If we

consider all pairs of highly correlated bursts (2D correlation above θ) and compute their

instantaneous correlation, we see that the variability between them decreases over time (Fig

2B). We conclude that bursts can be described as distinct attractors, each with its own basin of

attraction.

Table 2. Control experiments. A detailed description of every column can be found in the methods.

Before stimulation After stimulation

MEA # Prep date Age (DIV) Bursts /hour # of clusters % Explained Stimulated existence (out of 3) Bursts/hour # of clusters % Explained

26550 24.1 21 553 11 81 3 664 8 71

39740 24.4 18 609 17 88 1 659 10 79

38427 24.4 21 632 18 97 3 600 16 85

26536 7.2 20 234 15 94 3 453 17 83

38427 7.2 21 566 9 84 2 631 17 88

https://doi.org/10.1371/journal.pcbi.1011784.t002

Fig 2. Attractor dynamics. (A) Similar initial states of bursts lead to similar bursts (top-right). 2-D histogram of two correlation measures across all

pairs of bursts—spatial correlation between their initial states and the 2D correlation between the full bursts. Initial states are defined as the activity at

the first 5msec of a burst, after the threshold crossing. White dashed lines denote the thresholds used for clustering (see Methods). The horizontal

threshold, θ, is used as a similarity threshold between bursts. (B) Dynamics of convergence. For every pair of similar bursts (2D correlation larger than

θ), we measure the spatial correlation at every point in time. The black line denotes the mean and the grey shade represents the standard deviation (not

SEM). Note the diminishing variability with time, indicating convergence from variable initial states. (C) Dynamics-based clustering. In this example,

the vocabulary contains 9 main clusters, explaining about 85% of the spontaneous bursts. Each subtitle contains the number of bursts in each cluster

and the percentage out of all spontaneous bursts. Each center of mass trajectory (grey) is a single burst, the circles denote the initial state of each burst.

Axes represent the electrodes’ indices. (D) UMAP embedding representing all the 1017 spontaneous bursts recorded during 4 hours of activity.

Contours and background colors denote the density of neural states (blue—low density, red—high density). The black solid lines represent the median

trajectory of each of the 9 clusters in the spontaneous vocabulary (the cluster numbers are noted next to the trajectories’ onset). The observed tendency

of bursts to move toward the center is primarily due to the fact that the center of the UMAP space corresponds to the origin (0,0), and the activity of the

bursts diminishes as they progress towards their end.

https://doi.org/10.1371/journal.pcbi.1011784.g002
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To enumerate these attractors, we cluster all bursts into distinct groups. In the case of the

example network, 1017 bursts were divided into 9 clusters, with 151 bursts left unclassified.

Fig 2C shows these clusters in the MEA physical space. Clustering was based on a similarity

graph between all bursts, where similarity was defined by three different measures (see Meth-

ods). We then use spectral clustering ([18], see Methods) to define a vocabulary of attractors

for each network.

The center-of-mass (COM) trajectories are two-dimensional projections of a 120-D space,

and do not capture the full phase space of neural activity. To provide another view of neural

activity, we use a non-linear dimensionality reduction method (UMAP [19]). We consider all

high-D neural states of all 1017 bursts, disregarding their temporal structure. Projecting these

states into the first two dimensions of UMAP yields the contour plots seen in Fig 2D. Overlaid

on this plot are the medians of each cluster, showing that they are mostly separated in neural

activity, despite having large overlaps in the COM projection. Note that the UMAP projection

was not used to define clusters, and is thus an independent view of the attractor phenomenon.

Attractors in dynamical systems describe areas of phase space to which activity converges,

and does not leave. In contrast, the bursts we describe are transient events. Nevertheless, we

can think of them as attractors of the dynamical system until the peak of the burst. Once the

burst is established, the dynamics change (probably due to adaptation), and the attractor desta-

bilizes. Alternatively, one can consider a single global attractor—the quiescent state. In this

interpretation, the basin of attraction of this single attractor is highly structured. Each of the

bursts is a specific pathway within this basin, that is separated from the others. This separation

of timescales is common in the analysis of dynamical systems. We are interested in the fast

attraction phase of these dynamics, and not in the slow relaxation from them, and will thus

refer to these bursts as discrete transient attractors.

Evoked responses

We showed the existence of attractors using spontaneous activity. The motivation to study

attractors, however, stems from evoked activity. Attractors have been suggested to support the

memory of stimuli [20], to maintain a decision until it is carried out [21, 22], or to support

other computations related to evoked activity. Previous studies in-vivo showed conflicting

accounts on the relationship between spontaneous and evoked activity [10, 11]. We explored

this question in our controlled settings. Namely, we asked whether spontaneous and evoked

activity reside in the same dynamical landscape.

First, we searched for stimulation sites that generate a robust response. To this end, we

divided the MEA into 20 stimulation sites: sets of 6 adjacent electrodes (organized in a 3x2

configuration, with no overlap) that span the entire 2D MEA space (Fig 3A). We then tested

their robustness by injecting a simultaneous voltage pulse to all 6 electrodes. We repeated this

for the 20 sites for 30 cycles, with 10 seconds between each stimulation (see Methods).

Some of the stimulation sites generated a robust response (site 17, Fig 3B, bottom), while

other sites did not (site 10, Fig 3B, top). We quantified the robustness of a response to each site

by calculating the pairwise 2D correlation between all its 30 responses (Fig 3C). Focusing on

the robust responses, we can ask whether they are part of the spontaneous vocabulary of the

network or whether they represent an entirely different dynamics. For the robust response of

site 17 shown in Fig 3B, we see that the correlation within different repetitions of the evoked

response is as strong as the correlation between 17’s evoked responses and the spontaneous

bursts belonging to one of the spontaneous attractors (cluster 5, Fig 3D). The similarity

between spontaneous and evoked in this case can also be appreciated via the center of mass tra-

jectories (Fig 3F), which also emphasize the different initial conditions. Note that the
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stimulating electrodes themselves are excluded from this analysis to avoid artifacts (see Meth-

ods). We thus see that cluster 5 explains the evoked responses to site 17, a term which we will

define and use for all stimulation sites.

To systematically measure the existence of all evoked responses in the spontaneous clusters,

we define a cluster as explaining a specific repetition of a specific stimulation site. This requires

many of the spontaneous events of the cluster to be similar to that specific repetition (see

Methods). Fig 3E shows which clusters explain the 30 responses of sites 10 and 17. Some of the

evoked responses don’t align with any specific cluster, resulting in histograms that may not

add up to 30. If the stimulation site led the network to the basin of attraction of one of the

spontaneous clusters, we expect a histogram similar to that of site 17 (Fig 3E, green frame). It

could also be that the evoked response is at the border of a few basins, and thus more than one

spontaneous cluster is needed to account for all 30 bursts.

Our results allow us to use the stimulation sites which generated a robust response as

switches to control the dynamics of the network—we can now force the network to visit spe-

cific areas in the dynamical space. This raises the following questions: What will happen to the

network’s evoked response to this stimulation? What will happen to the spontaneous dynam-

ics? Will the spontaneous vocabulary change? What will happen to the stimulated attractors in

comparison to the non-stimulated ones?

Strengthening and weakening specific pathways

In order to answer these questions, we use the following protocol (Fig 4A): We record the

spontaneous activity of the network for four hours (during which the dynamics is stable), then

Fig 3. Evoked responses. (A) Electrode arrangement in the MEA (120 in total). Each stimulation site consists of 6

adjacent electrodes (black frame). There are 20 such stimulation sites with no overlapping electrodes. The set of 6

electrodes colored in green represents stimulation site number 17, and the set in yellow refers to site number 10. Probe

stimulation: We stimulated all sites, one after the other, 30 times each. The time between stimuli is 10 seconds. This lasts

1.75 hours in total. (B) Visualization of the evoked responses to sites 10 and 17: center of mass representation for all of

the 30 responses to each of these sites. The red dots denote the 6 stimulating electrodes in each case. (C) Robustness:

probability density function (PDF) of the pair-wise correlation values within each of the 2 sites. It is clear that the

network response to stimulation at site 17 is much more robust and coherent compared to 10. (D) Existence: Comparing

the evoked responses to the spontaneous vocabulary. Here we show the PDF of the pair-wise correlation values within

cluster 5 in the spontaneous activity and the PDF of the pair-wise correlation values between the evoked responses to site

17 and the spontaneous bursts in cluster 5. They overlap almost completely, meaning that the evoked responses to 17 are

indeed part of the spontaneous vocabulary of the network. (E) Existence in terms of spontaneous vocabulary: Which

spontaneous clusters explain the 30 evoked responses for each of the 2 sites? In the case of site 10—there is no specific

cluster, also—a large part of the responses is not explained by any of the clusters. In the case of site 17, cluster number 5

explains all of the evoked responses. (F) Center of mass trajectories of the evoked responses to 17 (green) together with

the spontaneous bursts in cluster 5 (grey). This illustrates the convergence of the two classes to the same attractor, and

emphasizes the different initial states they start from.

https://doi.org/10.1371/journal.pcbi.1011784.g003
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we test the 20 stimulation sites as described above (Fig 3A). For each network, we select the

three most robust stimulation sites using visual inspection of the center of mass trajectories,

and correlation histograms (see Methods). These sites, denoted I, II, and III, are then stimu-

lated for 10 hours (Fig 4). Finally, we record the spontaneous activity of the network again for

an additional four hours.

The selection of the sites for prolonged stimulation was based on a short preliminary analy-

sis conducted following the probe phase of each experiment (see Methods). The existence and

robustness analysis (Fig 3B–3E) was done after the entire experiment was over. Therefore,

before analyzing the changes in the spontaneous activity after stimulation, we have to make

sure that the stimulation sites we selected do indeed lead to robust bursts that also exist in the

spontaneous vocabulary of the network. To do so, we repeat the analysis done in Fig 3 for all

networks and all stimulation sites. For each stimulation site we evaluate the robustness of its

evoked responses (Fig 5, robustness) using the correlation among the 30 repetitions. We quan-

tify the existence of this response in the spontaneous vocabulary by asking how concentrated

histograms like those of Fig 3E are. Namely, how many spontaneous clusters are required to

explain the majority of the 30 evoked responses of a particular stimulation site (Fig 5, exis-

tence). We see that robust responses (high values) are mostly associated with existing bursts

(low values) from the spontaneous vocabulary of the network. Since this analysis was done

after the entire experiment was over, not all selected sites (denoted in red circles) were indeed

robust and similar to spontaneous bursts. Our analysis will focus on those that, post-hoc, were

found to pass these criteria (green background).

We expected this protocol to target three (or less) attractors and strengthen them in a Heb-

bian manner. Namely, the evoked responses will be more robust, and the corresponding spon-

taneous patterns will be more present in the spontaneous activity. Surprisingly, we observed

two opposite effects: the spontaneous activity linked to stimulation weakened, while the

evoked responses did become more robust.

To quantify the changes in the spontaneous vocabulary, we asked what happened to the

spontaneous bursts that were similar to the evoked ones, following the prolonged stimulation.

For instance, we can correlate the spontaneous bursts in cluster 5 mentioned above (Fig 3E) to

all 1017 spontaneous bursts that occurred before stimulation. The histogram in Fig 6A (blue)

shows a large peak in high correlation values, consistent with the fact that this pattern is part of

Fig 4. Experiment protocol. (A) Each experiment starts with a 4-hour recording of spontaneous activity. We then

probe the system in 20 different stimulation sites, one after the other, and analyze the evoked responses to each of the

20 sites. We choose the 3 stimulation sites which generated the most robust and distinct evoked responses, and start a

10-hour stimulation period in which we alternate between stimulating these 3 sites (I, II, and III) and recording

spontaneous activity (see inset). Following the 10-hour stimulation, we record the spontaneous activity for another 4

hours. Control experiments in which the 10-hour stimulation period had no stimulation but only spontaneous activity

recordings, were also done (see Table 2). (B) The 3 selected stimulation sites, I, II, and III, in the experiment presented

throughout this manuscript (site 3 in green, site 16 in blue, and site 17 in red).

https://doi.org/10.1371/journal.pcbi.1011784.g004
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the vocabulary. Repeating the same analysis, but this time comparing to the 2092 spontaneous

bursts from the period after the stimulation, results in a very different distribution (Fig 6A,

purple). We can see that the stimulated attractor almost disappeared from the spontaneous

vocabulary.

We quantified the changes in the existence of patterns using the cumulative probability dis-

tribution, exemplified in Fig 6B for the two distributions mentioned above. Intuitively, we care

about changes in high values of correlation—as these indicate spontaneous bursts that are sim-

ilar to the pattern of interest. The exact definition of high is somewhat arbitrary, which is why

we use a range of threshold values (α, see Methods). Using this threshold, we can calculate the

change in the existence of high-correlation patterns (Fig 6B).

Is this change due to our stimulation or simply a result of drift over time? We repeated this

analysis for 11 networks with stimulated patterns (Table 1), and for 5 networks without stimu-

lation (Table 2). Importantly, for these 5 control networks, we also chose 3 robust patterns but

simply did not stimulate them. We see that the stimulated patterns tend to disappear from the

spontaneous vocabulary after stimulation (ΔCDF is negative), while the mean effect in the con-

trol experiments is smaller (Fig 6C). Note that the difference between control and stimulation

experiments is not statistically significant, but the trend in several analysis methods is in the

same direction, with some of them reaching p-values of 0.05 (see S1 Fig). We chose to show

this analysis as it is the most straightforward one.

The difference shown in Fig 6C could stem from two different effects—a larger drift in the

spontaneous activity due to stimulation of the network, and a specific drift of the stimulated

vs. the non-stimulated patterns within the stimulated networks. To dissociate the two, we now

only consider the stimulated networks. For each network, we chose the clusters that were

Fig 5. Existence and robustness of evoked responses. Each black dot represents a probe site in a given experiment (20

sites, 16 experiments, see Methods). The X-axis denotes the median pair-wise correlation values between the 30

responses. The Y-axis represents a measure of existence in the spontaneous vocabulary: the number of clusters

required to explain 50% of the 30 responses. Small random noise is added to the number of clusters to aid in

visualization. In general, the more robust the response is—fewer clusters are required to explain it. Red circles denote

the stimulation sites selected for prolonged stimulation (3 sites in each experiment, see Fig 4). If at least 50% of the 30

responses exist in one or more of the spontaneous clusters, the corresponding number appears on the Y-axis. If not,

the number is represented as infinity, which explains the jump in the graph after approximately 6 clusters. The evoked

responses in the green area were defined as robust and existing in the spontaneous vocabulary, and therefore are used

for further analysis.

https://doi.org/10.1371/journal.pcbi.1011784.g005

PLOS COMPUTATIONAL BIOLOGY Revealing and reshaping attractor dynamics in large networks of cortical neurons

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011784 January 19, 2024 8 / 20

https://doi.org/10.1371/journal.pcbi.1011784.g005
https://doi.org/10.1371/journal.pcbi.1011784


robustly evoked by stimulation (Fig 5, see Methods) and calculated ΔCDF. We additionally

chose the same number of non-stimulated clusters (see Methods) for each network and

repeated the same analysis. Networks are expected to differ not only in their correlation

thresholds but also in their baseline drift rates. We therefore z-scored the ΔCDF values within

each network before combining them across networks (Fig 6D). We can see that, on average,

ΔCDF is negative for the stimulated patterns, while positive for the non-stimulated ones. This

indicates that indeed the larger drift results from specifically stimulating these patterns.

One simple possible explanation for this effect is that the stimulated pathways were “dam-

aged” such that the network is no longer able to generate these patterns. Such damage could

arise, for instance, from a homeostatic increase in the firing threshold of highly active neurons

[23]. Analyzing the evoked responses, however, shows the opposite is true. Throughout the

10-hour stimulation, not only that the network continues to generate these evoked responses,

but they also get more robust with time. This can be visually appreciated by looking at the cen-

ter-of-mass projections of one evoked response (site 17, Fig 7A), in which later responses are

more tightly concentrated in space. We quantify this effect by measuring the variance between

the evoked responses in windows of 30 minutes (Fig 7B), and repeated the analysis across all

networks (Fig 7C). In other words, these pathways remained accessible via stimulation but

became almost unreachable spontaneously. One can say that there is now a new association

between the stimulated attractors and the occurrence of the specific stimulation that generates

an evoked convergence to them.

Fig 6. Changes in the spontaneous activity. (A) 2D correlation values between all spontaneous bursts and 25 bursts

from cluster 5, before (blue—high correlations) and after (purple—low correlations). (B) CDFs of the 2 distributions

shown in (A). We quantify the effect by considering the most correlated bursts—the top 1 − α percent. This defines a

correlation threshold, from which we can measure which percent of the bursts cross this threshold after stimulation.

We measure this difference for α 2 [0.750.95]. (C) Existence of effect—stimulation vs. control. Statistics across 11

stimulation experiments (Table 1) and 5 control experiments (Table 2). The violins represent ΔCDF values in

stimulation experiments (red) and in control experiments (green) for a range of α values. The numbers above each pair

of violins represent the p-value of the hypothesis that the effect in the stimulation experiments is larger than in the

control experiments. (D) Specificity of the effect—measuring the effect in the spontaneous vocabulary. The violins

represent the z-scored ΔCDF values for the stimulated clusters (red) and for the non-stimulated clusters (green), see S2

Fig for raw ΔCDF values. The numbers above each pair of violins represent the p-value of the hypothesis that the effect

in the stimulated clusters is larger than in the non-stimulated clusters. The same analysis was done for the control

experiments as well (see S3 Fig).

https://doi.org/10.1371/journal.pcbi.1011784.g006
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Mechanism

These effects raise many interesting questions—What causes this phenomenon? What is the

mechanism behind these vocabulary changes? How do the background dynamics change to

support such changes?

We imagine these two effects in the following way: Each network has a set of multiple dis-

crete attractors that can be reached spontaneously, while some of them can also be reached

through electrical stimulation. We show that, throughout stimulation, the evoked responses

become more robust with time—consistent with the basin of attraction becoming steeper on

one side. On the other hand, the same attractors become much less accessible spontaneously—

consistent with another side of the basin becoming flatter. One can imagine digging in the

energy landscape and piling the dirt onto the other side.

In order to verify this hypothesis, we need to map the basin of attraction before and after

stimulation. We do this via the set of initial states of bursts. Specifically, we ask whether the

same set of initial states will lead to the same set of bursts. We define such a candidate set by

considering the initial states of one of the stimulated clusters (see Methods). We can now fol-

low all the bursts that originate from this area. Before stimulation, these bursts are similar to

one another (the peak at large correlation values in Fig 8A left, blue). After the stimulation,

however, the bursts originating from the same area are much more variable (Fig 8A left, pur-

ple). To quantify this difference, we once again calculate ΔCDF as shown in Fig 6B. Repeating

the analysis on initial states stemming from a non-stimulated cluster shows a smaller effect

(Fig 8A, right). We pool the data from all networks using z-scores of this value, showing a

trend for the stimulated patterns to be more disrupted (Fig 8B).

We can visualize the change in the dynamics by looking at all the bursts associated with a

single cluster—evoked and spontaneous, before and after the stimulation. Using nonlinear

dimensionality reduction, we can see that for the non-stimulated patterns (Fig 8C right, green

frame), similar initial conditions lead to similar bursts. For the stimulated cluster (left, red

frame), however, this is only true before stimulation (narrow distribution of blue trajectories),

and not after (purple trajectories).

Discussion

In this work, we analyzed the spontaneous activity of cultured neural networks. We showed

that each such network has a finite repertoire of bursts that function as discrete attractors.

Based on these dynamics, we were able to create a vocabulary of spatiotemporal patterns that

Fig 7. Evoked responses become more robust. (A) Center of mass trajectories of the responses to site 17 throughout

the 10-hour stimulation (color: 0 (green) to 10 (yellow) hours). The 6 red dots denote the specific stimulating

electrodes. (B) Variability between the evoked responses in (A) throughout the 10-hour stimulation period. The

variance is calculated in windows of 30 minutes throughout stimulation. In each window, we measure the deviation

from the window’s mean response (Euclidean distance). The plot is normalized by the variance at the first window. (C)

Mean and variance of the variability between the responses for each stimulation site (statistics across all 11 experiments

(Table 1)).

https://doi.org/10.1371/journal.pcbi.1011784.g007
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describe the spontaneous dynamical space of the network. We showed that these attractors are

accessible not only spontaneously, but also using electrical stimulation—we were able to find

stimulation sites that generated robust and coherent evoked responses similar to the ones in

the spontaneous vocabulary.

In order to answer questions regarding the plasticity of the vocabulary, we used electrical

stimulation to force the network’s dynamics to visit specific attractors repeatedly. We find that

the targeted attractors are eliminated from the spontaneous vocabulary, while they are robustly

evoked by the electrical stimulation. This seemingly paradoxical finding can be explained by a

Hebbian-like strengthening of specific pathways into the attractors, at the expense of homeo-

static-like weakening of non-evoked pathways into the same attractors.

Synchronized bursts are routinely observed in neural cultures and have been suggested

to be a barrier to plasticity [24]. Therefore, several attempts have been made to suppress

them in order to allow plasticity [25, 26]. Our work suggests that these synchronized bursts

can also be informative, and serve as objects that advance the study of plasticity. In this

work, we learned the network’s dynamical structure and used it as a tool to shape the

dynamics in specific directions. This is similar to the concept of learning within the intrinsic

manifold presented in [27] which suggests that working within the constraints imposed by

the underlying neural circuitry can make the learning process significantly easier and more

accessible.

To our knowledge, this work provides the first direct evidence for the plasticity of multiple

attractors in a biological neural network. The plasticity principles we describe improve our

understanding of how attractors in a biological system evolve.

Fig 8. Mechanistic explanation. (A) The probability distribution of the 2D correlations between pairs of bursts with

initial states similar to the ones of the stimulated patterns (red frame) and not similar to the stimulated patterns (green

frame), before stimulation (blue), and after (purple). The difference between the two is measured by ΔCDF as shown in

Fig 6B. (B) Statistics across 11 stimulation experiments (Table 1). The violins represent ΔCDF values in stimulation

clusters (red) and in non-stimulated clusters (green) for a range of α values. The numbers above each pair of violins

represent the p-value of the hypothesis that the effect in the stimulation clusters is larger than in the non-stimulated

clusters. The same analysis was done for the control experiments as well—see S4 Fig. (C) Trajectories in a non-linearly

reduced 2D space (using UMAP) of one stimulated cluster (left, red frame) and one non-stimulated cluster (right,

green frame), before (blue) and after (purple) stimulation. The dashed circles denote the area of initial states for each

cluster.

https://doi.org/10.1371/journal.pcbi.1011784.g008
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Methods and materials

Cell culture

Cortical neurons were obtained from newborn rats within 24h after birth as described in [28].

The neurons were plated directly onto multielectrode arrays (MEAs) and allowed to develop

mature networks over a time period of 18–21 days. The number of neurons in a typical net-

work is in the order of 106. The preparations were bathed in Minimal Essential Medium

(MEM) supplemented with NuSerum (10%), L-Glutamine (2mM), glucose (20mM), and insu-

lin (25mg/l), and maintained in an atmosphere of 37˚C, 5% CO2 and 95% air in an incubator.

Starting a week after preparation, half of the medium was replaced every 2 days with a fresh

medium similar to the one described above excluding the NuSerum and with lower concentra-

tions of L-Glutamine (0.5mM) and 2% B-27 supplement.

During recordings and stimulation, the cultures were removed from the incubator, but still

maintained in an atmosphere of 37˚C, 5% CO2, and 95% air. The dish was perfused at a con-

stant ultra-slow rate of 2.5 ml/day by a custom-built perfusion system.

Experimental system

Network activity was recorded and stimulated through a commercial 120-channel headstage

(MEA2100, MCS). The 120 30μm diameter electrodes are arranged in a 12x10 array, spaced

1mm vertically and 1.5mm horizontally. Data acquisition was performed using Multi Channel

Suite. All data were stored as threshold crossing events, with the threshold set to 5σ, where σ is

the standard deviation of the entire voltage trace. All thresholds were separately defined for

each of the recording electrodes before beginning the experiment protocol. Each protocol was

started only after the culture rested on the system for each least 30 minutes during which we

verified by visual inspection that indeed threshold-crossings correspond to clear spike events.

Stimulation profile: As described in the text, 6 electrodes were selected for stimulation at

each stimulation site. Biphasic voltage pulses of plus and minus 700mV lasting 400μsec,

200μsec respectively for each phase were activated through all 6 electrodes simultaneously.

Data processing

Threshold crossings (5σ) yield discrete time stamps of spike events from 120 extra-cellular

electrodes. Each electrode records spike events from a number of adjacent or distant neurons

(multi-unit recordings). We smooth (using a Gaussian kernel, σ = 2msec) and bin the data

(bin size is 5 msec) to get 120 continuous time series, in 5 msec resolution (Fig 9).

Following stimulation, we noticed two effects: An electrical artifact lasting less than 2 msec,

and spanning many electrodes; In addition, the 6 stimulating electrodes exhibited modified

waveforms for roughly 200 msec following stimulation. These were processed as many spiking

events by the system, with much shorter inter-spike-intervals than for the other electrodes

(5 ± 1 vs. 12 ± 3). To mitigate stimulation artifacts and to only consider events that were well

isolated single spikes, we excluded the first 5 msec for all electrodes, and the entire response

for the stimulated electrodes.

Network burst extraction

We detected all spontaneous bursting events using threshold crossing with the threshold set to

4σ, where σ is the standard deviation of the overall activity—determined separately for each

network and each epoch (before and after stimulation). Using these events as a reference, we

defined the duration of each event by searching for the first crossings of 0.5σ before (starting

point) and after (ending point) the 4σ timestamp. The typical duration of these spontaneous
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bursting events is 100 to 250 msec. In our analyses, we focus specifically on the first 100 msec

of these busts, as this time-frame tends to exhibit the greatest variability among them (Fig 10).

Clustering method

When clustering the spontaneous activity, we relied on the observation that similar initial con-

ditions lead to similar patterns (bimodal distribution in Fig 2A). There are many possible met-

rics for comparing the spatiotemporal activity patterns. To capture different aspects of the

bursts, we used 3 different metrics to measure the similarity between them. In each case, we

consider two bursts X1, X2 2 RN×T, where N = 120 and T = 20 (100msec in 5msec bins).

1. 2D correlation

The correlation coefficient between 2 bursts X1, X2 is computed in the following way:

corr2ðX1;X2Þ ¼
StSnðX1tn

� �X1ÞðX2tn
� �X2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðStSnðX1tn
� �X1Þ

2
ÞðStSnðX2tn

� �X2Þ
2
Þ

q

where �X1 and �X2 are the average of X1 and X2 over both dimensions (electrodes and time).

Fig 10. Network bursts—Statistics. (A) Mean (black line) and standard deviation (grey shading) of the overall activity

(sum over all 120 electrodes) across all network bursts in a single network. Only bursts that last at least 250 msec are

considered. (B) Mean (black line) and standard deviation (grey shading) of the pair-wise correlation values across time

between similar bursts (2D corr> 0.85). Only bursts that last at least 250 msec are considered.

https://doi.org/10.1371/journal.pcbi.1011784.g010

Fig 9. Continuous smoothed signal. Each spike event (a discrete timestamp, black vertical lines) is smoothed using a

Gaussian kernel (grey). Then, we bin the data (5 msec) and sum the over all signal in each bin. The result is a

continuous smoothed signal (blue) for each of the 120 electrodes.

https://doi.org/10.1371/journal.pcbi.1011784.g009
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This is equivalent to flattening both matrices X1 and X2 and subsequently computing the

Pearson correlation. See Fig 11A.

2. Euclidean distance between the center of mass of trajectories

We compute the center of mass (COM) of a burst as a weighted average of the activity from

all 120 electrodes. Namely, each electrode n has coordinates xn 2 R2 on the MEA. The 2D

trajectory of the center of mass of burst X1, denoted X1COM
2 R2�T is then:

X1COM
¼
X

n

xnX1tn

The Euclidean distance between 2 such trajectories is computed as the norm of the differ-

ence between the two across time: StjX1COM
� X2COM

j. See Fig 11B.

3. Correlation of spatial profiles

The identity of the active electrodes is used to define this metric. The spatial profile of a

burst Atn is defined as a vector of length N capturing the overall activity of each electrode

throughout the burst: SPX1 = StX1. The correlation coefficient between SPX1 and SPX2 is

used. See Fig 11C.

The actual range of values for these 3 metrics varies between networks. In order to obtain

measures that are more invariant, we rely on the bimodal distributions of the initial state and

the full burst similarity shown in Fig 2A, but now extended to all three metrics in Fig 12A–

12C. For each network and each metric, we defined two thresholds (shown in dashed white

Fig 11. Evaluation metrics. (A) 2D correlation: correlation coefficient between the two flattened bursts. (B) Center of

mass (COM) distance: The sum of all Euclidean distances between the COM of two bursts. (C) Spatial correlation:

correlation coefficient between the spatial profiles of two bursts.

https://doi.org/10.1371/journal.pcbi.1011784.g011

Fig 12. Dynamics-based clustering. (A) For each pair of spontaneous bursts we compute the 2D correlation value and

the correlation between the initial states, then we plot the probability density of the values of the first as a function of

the second. The dashed white lines represent the thresholds that define the pairs of bursts that converge to the same

attractor (right upper square). (B) Same as in A, using the center of mass (COM) distance metric. (C) Same as in A,

using the spatiotemporal profile metric.

https://doi.org/10.1371/journal.pcbi.1011784.g012
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lines) in order to distinguish between pairs of bursts that converge to the same attractor (close

initial states and similar bursts) and pairs of bursts that converge to different attractors.

Based on this distinction we can build a graph for each of the three metrics: each node is a

burst; two nodes are connected if they cross both the initial condition threshold and the metric

threshold. Then, we sum these 3 non-directed graphs into a single similarity graph S with

edges valued 0–3, where Si,j = 0 means that burst i and burst j are not connected and therefore

not similar.

We perform spectral clustering [18] using the MATLAB function spectralcluster with the

following specifications:

• We use the normalized symmetric Laplacian matrix Ls ¼ D� 1=2
g LD� 1=2

g where Dg is the diago-

nal matrix obtained by summing the rows of the similarity matrix S.

• We use k-medoids as the clustering method.

We only consider clusters that capture at least 2% of spontaneous bursts, which accounts

for the vast majority of bursts (see Tables 1 and 2, “percent explained”).

Selecting stimulation sites

The experiment protocol comprises several phases, one of which is the probe phase, lasting

1.75 hours. During this phase, we record the network’s evoked responses from a predefined set

of 20 stimulation sites. Once the probe phase is completed, we need to identify the top 3 stimu-

lation sites that elicit the most robust responses in order to proceed with a 10-hour stimulation

using only these 3 selected sites. To achieve this, we conduct a brief analysis, taking up to 30

minutes, during which we assess the network’s evoked responses to all 20 stimulation sites.

Our goal is to identify three stimulation sites that consistently produce robust and coherent

responses. Furthermore, we aim to select three sites that are as spatially distant from each

other as possible, and whose evoked responses differ significantly from one another.

To aid in this selection process, we employ several visualization techniques:

• Center of mass trajectories: we view all 30 evoked responses for each of the 20 stimulation

sites in order to get a qualitative assessment of the robustness of each response (Fig 13A).

• Pair-wise correlation values: We examine these values both within each site and collectively

across all sites to assess the similarity among all 30 repetitions and dissimilarity from all the

other sites (Fig 13B). We wish to identify those with a concentrated distribution of high

within-correlation values (indicated in orange), minimizing any overlap with the across-site

distribution (depicted in blue).

• A dendrogram constructed from pair-wise correlation values across all stimulation sites:

serves as a tool before the final selection. We wish to choose three distinct responses, each

belonging to separate branches within the dendrogram (Fig 13C)

Relating evoked responses to spontaneous clusters

In order to measure the existence of the evoked responses in the spontaneous vocabulary of

the network, we wish to relate them to specific spontaneous clusters (shown in Fig 3E). To this

end, we define a cluster as explaining a specific repetition of a specific stimulation site. Com-

paring evoked responses to spontaneous bursts entails two difficulties:

• Stimulating electrodes in the evoked responses exhibit a qualitatively different signal.

• Different initial states for spontaneous and evoked bursts (Fig 3F)
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We thus exclude the stimulating electrodes before computing the 2D correlation between

evoked and spontaneous bursts. The threshold for similarity is expected to be lower than that

used to compare between two spontaneous bursts. We thus use an adjusted θ value (horizontal

dashed line in Fig 2A) reduced by some factor fth.

During the probe phase, we stimulate the network in 20 different sites, 30 times each. For

each such single response, we perform the following:

• Compute the pairwise 2D corr to all the spontaneous bursts

• If 2Dcorr> fthθ, this pair is considered similar

• We only consider single responses that are similar to at least m percent of all the spontaneous

bursts.

• For each such response, we say that it is explained by the cluster for which most of the similar

spontaneous events belonged to.

The results shown in Figs 3E and 5 are based on fth = 0.88 and m = 0.5%. The following

parameter combinations yielded qualitatively the same results: (fth, m) = (0.88, 1%), (0.85,

0.5%), (0.85, 1%), (0.9, 0.5%), (0.9, 1%).

Stimulated and non-stimulated clusters

In our analysis, we define for each network a set of clusters that are similar to the three evoked

responses (“stimulated clusters”) and a set of non-stimulated clusters. The definition of these

two sets relies on the analysis shown in Fig 5. For each stimulation site in the green area, we

defined a stimulated cluster as the one which explains most of the evoked responses to a given

Fig 13. Selecting stimulation sites. (A) Robustness. Visualization of the evoked responses to the selected sites 3,16,17 and site

10 serving as an example of one that did not meet the selection criteria. Each site is represented by the center of mass for all 30

responses. Red dots indicate the 6 stimulating electrodes in each case. Sites 3, 16, and 17 display robust and coherent responses,

in contrast to site 10. (B) Uniqueness. Comparing the evoked responses—within each site and across sites. Here we show the

pair-wise correlation values within the evoked responses to a given site (orange) and the pair-wise correlation values between

the evoked responses to this site and the evoked responses to all other sites (blue). The pairwise correlation values within the

selected sites (3,16,17) exhibit a narrow distribution centered around 0.9, while the values for site 10 are widely dispersed, with a

mean around 0.7. Furthermore, within the selected sites, the distribution is distinctly different from the pair-wise correlation

values across sites. In contrast, for site 10, these two distributions exhibit a significant overlap. (C) Selecting sites that generate

different evoked responses. Here we show a dendrogram that was constructed from the pair-wise correlation values across all

stimulation sites. In the case presented, we selected sites 3, 16, and 17 (red circles). In addition to their robustness and

uniqueness (shown in A and B), they were selected for their clear separation into distinct branches within the dendrogram.

https://doi.org/10.1371/journal.pcbi.1011784.g013
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stimulation site. The non-stimulated clusters were all the clusters that explained none of the

evoked responses to all 3 stimulation sites.

Measuring the difference between CDFs

We quantified the changes in the existence of patterns using the cumulative probability distri-

bution of correlation values between spontaneous bursts. The actual correlation values differ

between networks and between patterns. Therefore, we use a pattern-specific threshold as a

reference. Using this threshold, we can calculate the change in the existence of patterns before

and after stimulation in the following way:

DCDF ¼ a � CDFafterðCDFbefore ¼ aÞ

Since we care about changes in high values of correlation, we measure this difference for a

range of values: α 2 [0.75, 0.95].

This way we are able to measure the percentage of highly correlated spontaneous bursts to a

given pattern, before and after stimulation, in a pattern-specific manner.

Statistics across networks

Our data set consists of 11 stimulation experiments (Table 1) and 5 control experiments (in

which there was no stimulation during the 10 hours; Table 2). The tables summarize some of

the activity characteristics of each culture: MEA serial number, cell preparation date, the num-

ber of days elapsed between the preparation date and the experimental protocol initiation, the

number of spontaneous bursts per hour (before and after stimulation), the number of clusters

(dictionary size; before and after stimulation) and the overall percentage of network bursts

that were clustered (clusters containing less than 2% of all spontaneous busts are discarded),

and number of stimulated patterns (out of the selected 3) that that were shown, post-hoc, to be

robust and existent (Fig 5).

Success rate & probe as a criterion to proceed

The total number of cell preparations done in this study is about 100. A large number of them

did not develop well enough (due to contamination events, low density of cells, and other rea-

sons related to the maintenance atmosphere) and therefore were cleaned at early ages. The

ones that matured successfully were transferred to the experimental system. We performed 17

stimulation experiments and 14 control experiments on cultures between the ages of 18–21

days. Some of these experiments are not part of the results presented in this paper due to low

responsiveness to the 20 stimulation sites.

After the first 4-hour recording of spontaneous activity, there are 1.75 hours in which we

probe the culture in 20 different sites, repeatedly. After this probing, we do a short analysis in

which we pick the 3 stimulation sites which generated the most robust and coherent responses,

then we continue the protocol as shown in Fig 4. In some of the cultures, there were no such

responses at all; In these cases, we stopped the experiment right after the probing. The percent-

age of experiments (stimulation and control) that were completed (responded the at least 3 dis-

tinct stimulation sites robustly) is about 50%.

The decision of whether to continue an experiment after the probing stage was not based

on a clear-cut condition, but on evaluation based on several figures (Fig 13) aiming to evaluate

the robustness of the responses. If there were less than 3 robust and distinct responses, or

when there were very low activity levels (low number of participating electrodes), we stopped

the protocol.
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