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Abstract

During the oestrous cycle, the bovine endometrium undergoes morphological and functional

changes, which are regulated by alterations in the levels of oestrogen and progesterone and

consequent changes in gene expression. To clarify these changes before and after oestrus,

RNA-seq was used to profile the transcriptome of oestrus-synchronized beef heifers. Endo-

metrial samples were collected from 29 animals, which were slaughtered in six groups

beginning 12 h after the withdrawal of intravaginal progesterone releasing devices until

seven days post-oestrus onset (luteal phase). The groups represented proestrus, early oes-

trus, metoestrus and early dioestrus (luteal phase). Changes in gene expression were esti-

mated relative to gene expression at oestrus. Ingenuity Pathway Analysis (IPA) was used to

identify canonical pathways and functional processes of biological importance. A total of

5,845 differentially expressed genes (DEGs) were identified. The lowest number of DEGs

was observed at the 12 h post-oestrus time point, whereas the greatest number was

observed at Day 7 post-oestrus onset (luteal phase). A total of 2,748 DEGs at this time point

did not overlap with any other time points. Prior to oestrus, Neurological disease and Organ-

ismal injury and abnormalities appeared among the top IPA diseases and functions catego-

ries, with upregulation of genes involved in neurogenesis. Lipid metabolism was

upregulated before oestrus and downregulated at 48h post-oestrus, at which point an upre-

gulation of immune-related pathways was observed. In contrast, in the luteal phase the Lipid

metabolism and Small molecule biochemistry pathways were upregulated.

Introduction

In female mammals, the uterus is an organ that serves several purposes, including sperm trans-

port, implantation of the conceptus, placentation, and the maintenance of pregnancy. During

the oestrous cycle, levels of steroid hormones fluctuate, permitting reproductive receptivity,

and enabling successful establishment of pregnancy. This cycle facilitates the physiological
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remodelling of the endometrium and prepares it for embryonic implantation should concep-

tion occur [1]. In cattle, this 21-day cycle is divided into four phases: proestrus, oestrus,

metoestrus and dioestrus [2,3], and the morphological changes which occur are regulated by

both progesterone (P4) and oestrogen (E2). Proestrus occurs when circulating P4 levels are at

basal level and luteinizing hormone (LH) pulse frequency and E2 concentrations increase and

peak. The latter peaks just before ovulation (Day 0) at which time the animal is reproductively

receptive [4]. As the animal enters metoestrus, the corpus luteum begins to develop, leading to

an increase in P4, which peaks about day 12 (dioestrus). During this process, the endometrium

transforms from a proliferative to a secretory state [5]. In the secretory state, uterine gland

secretion is at maximum until implantation begins, producing ‘histotroph’ that contains many

nutrients essential for successful implantation and nourishment of the conceptus and its inter-

actions with the mother [6,7].

Around the time of oestrus, spermatozoa introduced into the cranial vagina enter the cervi-

cal canal on their way to the uterus and oviduct, which contains mucus-filled micro-grooves

that conduct sperm into the uterus and from there to the oviduct [8]. Some sperm are retained

by uterine glands [9], while the rest are transported towards the oviduct by smooth muscle

contractions [10]. The transport process appears to occur faster in the late follicular phase, sug-

gesting that the endocrine environment and consequent changes in gene expression are also

important to enable this process [11]. Since sperm cells are immunologically foreign, and mat-

ing introduces bacteria into the uterus, a local inflammatory response occurs that removes the

excess cells and debris. This includes a rapid influx of polymorphonuclear (PMN) leukocytes

along with the activation of the adaptive immune response [12]. Seminal fluid can also modu-

late inflammatory responses in the female reproductive tract that enhance the possibility of fer-

tilization and pregnancy [13] and PMN cells phagocytose the sperm, inducing formation of

neutrophil extracellular traps [14].

The endometrium undergoes significant change to facilitate sperm transport and removal,

along with the transition from a proliferative to a secretory state, and these are reflected in the

transcriptome. In the proliferative state, the endometrium thickens, with an increase in vascu-

larization and mitosis in stromal and epithelial cells, along with increased ciliation of the epi-

thelium. Cell proliferation decreases in the secretory stage, while endometrial glands increase

in size [15]. These changes ensure that the maternal environment is optimal for supporting the

embryo post-implantation and these physiological changes will be reflected in the transcrip-

tome. The endometrial transcriptome is regulated by endocrine and species-specific factors

[16], including the periovulatory endocrine environment, particularly the size of the preovula-

tory follicle [17], and postovulatory P4 concentrations [18–21]. Other external factors such as

uterine disease [22–26] and genetic merit for fertility [27,28] contribute to this highly regulated

process. Following implantation, further changes occur at a transcriptomic level in response to

the presence of a conceptus [29–31], and proximity to the conceptus [32]. The endometrial

transcriptome was found to differ at 6–8 days post-oestrus between cows that became pregnant

after embryo transfer and those that did not do so, particularly with respect to genes regulating

histotroph composition and endometrial receptivity [33]. The location in relation to the cor-

pus luteum also affected the bovine endometrial response to the conceptus [34]. One study

[35] showed that when ovariectomized cows were treated with E2, P4, or a combination of

both, to determine how these hormones affected the transcriptome, separate clusters of genes

were regulated by E2. These included genes involved in the cell cycle, morphogenesis, and dif-

ferentiation, whereas the profile of the P4-regulated clusters included genes involved in luteini-

zation, oocyte maturation, and catecholamine metabolism. Furthermore, components of

seminal plasma were shown to alter the endometrial transcriptome [36]. Artificial insemina-

tion of heifers with semen from low and high-fertility bulls led to differential gene expression,
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with high-fertility semen leading to increased expression of genes involved in immune

response and inflammation [37]. Transcriptomic studies have also identified signalling mole-

cules supporting embryonic development in the first seven days after ovulation [38]. In addi-

tion, the endometrial microbiota is associated with differential gene expression in postpartum

cows, and this variation may be modulated by a pathway that works by affecting ovarian cyclic-

ity on the endometrium [39].

There have been relatively few transcriptomic studies of the endometrium concentrating

specifically on the perioestrus period in bovines. Most to date concentrate on the luteal phase,

implantation, pregnancy, and the post-partum period. The current study uses endometrial tis-

sues harvested in tandem with endocervical tissues derived from oestrus-synchronized heifers.

The data on the cervical transcriptome of these animals have been published previously by our

group [40,41] and also later analysis of this dataset was performed by Gonçalves et al. [42],

who compared the differentially expressed genes (DEGs) for the follicular and luteal phases. In

this study, RNA-sequencing (RNA-seq) data was generated from samples derived from the

endometrial tissue of oestrus-synchronized heifers during the perioestrus period, allowing

investigation of changes in the transcriptome as the endometrium was exposed to changes in

E2 and elevation in P4 concentrations, with the final sample taken at Day 7 after the onset of

oestrus (early luteal phase).

We hypothesized that the endometrium undergoes changes in gene expression around the

time of oestrus in response to fluctuations in E2 and P4 concentrations, and that these changes

are related to the facilitation of sperm transport towards the oviduct and the subsequent prepa-

ration of the endometrium for successful embryonic implantation. The aim of this study was

to generate and compare gene expression profiles at five perioestrus time points against the

onset of oestrus, and these have been related in this work to the physiological changes that

occur just before and after oestrus.

Materials and methods

Animals, reproductive management, and tissue collection

Twenty-nine nulliparous mixed-breed beef heifers were used, as described by Pluta et al. [40]

who used cervical tissue from the same animals for transcriptomic analysis. All procedures

were licensed by the Irish Department of Health and Children in accordance with European

Community Directive 86/609/EC and the Cruelty to Animals Act (Ireland, 1876) and were car-

ried out with approval of UCD Animal Research Ethics Committee (permit ID: AREC-P-08-

36-Pluta-Carrington).

To synchronize oestrus, a controlled internal drug release device (CIDR, Zoetis, Dublin,

Ireland) was inserted for 8 days. The day before CIDR removal the cattle were injected intra-

muscularly with 2 ml (0.25 mg/ml) of a synthetic prostaglandin analogue, (PGF2α-Estrumate,

Chanelle Pharmaceuticals, Loughrea, Ireland). Heifers were checked for signs of oestrus every

6 h post-CIDR removal until 60 h afterwards. All animals came into oestrus between 48–72 h

post-CIDR removal [40]. Blood samples were taken by jugular vein puncture every 12 h on

Day 0 (the day CIDR was removed), every 6 h on Day 1, every 3 h on Day 2, every 3 h on Day

3, every 12 h on Day 4, and once a day from Day 5 to Day 8. Serum was separated from plasma

within 12 h of sampling and was stored at −20˚C. LH, E2 and P4 concentrations were mea-

sured according to the methods of Cooke et al. [43] and Forde et al. [20]. Serum concentra-

tions of E2, P4 and LH for the animals taken at different time points have been published

previously [40].

Endometrial tissue samples were collected from the heifers after slaughter at a local licensed

abattoir as follows: Group 1: 12 h post- CIDR removal (n = 6); Group 2: 24 h post- CIDR
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removal (n = 6); Group 3: at the onset of oestrus (n = 4); Group 4: 12 h post-oestrus onset

(n = 4); Group 5: 48 h post-oestrus onset (n = 4); and Group 6: Day 7 post-oestrus onset

(n = 5) (luteal phase). Reproductive tracts were opened longitudinally. Both caruncular and

intercaruncular tissues were sampled. Endometrial mucosa, which included all cell types, was

removed and placed in RNAlater™ (Thermo Fisher Scientific, Dublin, Ireland), then trans-

ferred to microcentrifuge tubes after 24 h and stored at −80˚C.

RNA preparation

The samples stored at -80˚C were used for RNA preparation. This work was performed sepa-

rately to that of Pluta et al. [40]. Total RNA was isolated from endometrial homogenate using

TRIzol1 reagent (Thermo Fisher Scientific, Dublin, Ireland) according to the manufacturer’s

instructions. Endometrial tissue (50 mg) was homogenized in 1 ml of TRIzol1 using stainless

steel beads and a Qiagen (Crawley, U.K.) TissueLyzer II (2 × 120 sec, maximum speed). After

homogenization, 200 μl of chloroform was added to each sample, centrifuged (12,000 × g, 15

min), and the upper aqueous phase was transferred to a clean micro-centrifuge tube. RNA was

precipitated using an equal volume of isopropanol. The RNA was purified using a Qiagen

RNeasy mini kit (Qiagen, Crawley, UK) according to the manufacturer’s recommendations.

A NanoDrop spectrophotometer ND-1000 (Nanodrop, Denver, USA) was used to quantify

RNA concentration and an Agilent Bioanalyzer 2100 (Agilent Technologies, Santa Clara,

USA) was used to confirm RNA quality using an RNA Nano chip. The 260/280 absorbance

ratio ranged between 1.92 and 2.18 for all samples. The RNA integrity number (RIN) was

greater than 7.5 for all samples with an average value of 9.2. The rRNA ratio (28S/18S) varied

from 1.1 and 2 between individual samples. These data are provided in S1 Table.

RNA-seq library preparation and sequencing

RNA-seq library preparation and sequencing were performed by BGI Genomics, Shenzhen,

China. This work was carried out separately to that of Pluta et al. [40]. Briefly, mRNA was iso-

lated from 200 ng total RNA and purified by oligo-dT beads, and the TruSeq RNA Sample

Prep Kit v2 (Illumina, San Diego, USA) protocol was used to construct the libraries. The RNA

was fragmented with Elute, Prime, Fragment Mix (EPF, Illumina). First-strand cDNA synthe-

sis was carried out using First Strand Master Mix and Super Script II reverse transcription

(Invitrogen). The reaction conditions were 25˚C for 10 min, 42˚C for 50 min, and 70˚C for 15

min. The product was purified using RNAClean XP Beads (Beckman Coulter Life Sciences,

Indianapolis, USA), followed by addition of second strand Master Mix and dATP, dGTP,

dCTP, dUTP mix to synthesize the second-strand cDNA at 16˚C for 1 h. To end repair, a sin-

gle dATP nucleotide was added to each strand, and adaptor ligation was performed. The puri-

fied fragmented cDNAs combined with End-Repair Mix were incubated for 30 min at 30˚C.

The end-repaired DNA was purified with AMPure XP Beads (Beckman Coulter Life Sciences),

and A-Tailing Mix was added and incubated for 30 min at 37˚C after mixing. Adapter ligation

was performed by adding adenylated 3’ end DNA, RNA Index Adapter and Ligation Mix, mix-

ing well by pipetting, then incubating for 10 min at 30˚C. The end-repaired DNA was purified

with AMPure XP Beads.

Uracil-N-glycosylase was added, and the mixture was incubated for 10 min at 37˚C, fol-

lowed by product purification with AMPure XP Beads. Polymerase chain reaction amplifica-

tion with PCR Primer Cocktail and PCR Master Mix (Illumina) was performed to enrich the

cDNA fragments. The PCR products were purified with AMPure XP Beads. The libraries were

validated by measuring the distribution of the fragment size using an Agilent 2100 Bioanalyser
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(Agilent Technologies) and by assessing library quantification through RT-qPCR with Taq-

Man Probe (Thermo Fisher Scientific).

The libraries were then amplified on a cBot system (Illumina, San Diego, USA). The cluster

was generated on a flowcell (TruSeq PE Cluster Kit V3–cBot–HS, Illumina). A total of 29

paired-end 2 × 90 bp libraries were sequenced with the HiSeq 2000 System (TruSeq SBS

KIT-HS V3, Illumina).

Bioinformatics and statistical analysis of RNA-seq differential gene

expression

Bioinformatics procedures were performed on a 32-core Linux Compute Server (4 × AMD

Opteron™ 6220 processors at 3.0 GHz with 8 cores each), with 256 GB of RAM, 24 TB of hard

disk storage, and with Ubuntu Linux OS (version 14.04.4 LTS). All of the bioinformatics and

statistical workflow scripts (Bash, Perl, and R programming languages) used in this work are

available from a public GitHub repository (https://github.com/carolcorreia/Oestrus-

Endometrium-RNA-sequencing). Fig 1 shows the RNA-seq bioinformatics and statistical

workflows. Sequence data files for the 29 RNA-seq libraries have been deposited in the Euro-

pean Nucleotide Archive (ENA, https://www.ebi.ac.uk/ena/browser/search) with accession

number PRJEB33671.

Filtering and segregation of sequencing reads based on the unique RNA-seq library barcode

index sequences were performed by BGI Genomics using a pipeline that simultaneously

demultiplexed and converted pooled sequence reads to discrete FASTQ files for each RNA-seq

sample with no barcode index mismatches permitted. The quality of the individual 29 raw

RNA-seq sample library files was assessed with the FastQC software (version 0.11.5) [44].

Paired-end reads from each individual library were aligned to the Bos taurus reference genome

(UMD3.1.1 –GCF_000003055.6; [45,46], from the NCBI RefSeq database [47], using the STAR

aligner software (version 2.5.1b) [48]. Following this, the aligned SAM files were quality-

assessed with FastQC. For each library, raw counts for each gene were obtained using the fea-

tureCounts software from the Subread package (version 1.5.1-p1) [49], with parameters set to

Fig 1. Diagram showing RNA-seq bioinformatics and statistical analysis. The main workflow steps and their order are shown. These computational

workflows are available at https://github.com/carolcorreia/Estrus-Endometrium-RNA-sequencing.

https://doi.org/10.1371/journal.pone.0301005.g001
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assign unambiguously uniquely aligned paired-end reads in a stranded manner to the exons of

genes within the UMD 3.1.1 B. taurus reference genome annotation (NCBI GCF_000003055.6

–genomic GFF file).

Raw gene count outputs from featureCounts were used to establish DEG analysis within an

R-based workflow (RStudio IDE version 1.0.136; [50]), running R version 3.3.0 [51] using the

edgeR package (version 3.14.0) [52] from the Bioconductor project (version 3.4, with BiocIn-

staller 1.24.0) [53]. The org.Bt.eg.db annotation package (version 3.3.0) was used to obtain

gene names and symbols [54]. Genes displaying expression levels below the minimally set

threshold of one count per million (CPM) in at least four individual libraries (i.e., equivalent

to the smallest group of biological replicates) were discarded from downstream analysis. Nor-

malization factors were calculated for each library using the trimmed mean of M-values

method [55]. The Cox-Reid method was used to estimate the dispersion parameter for each

library [56]. DEGs between the perioestrus groups (12 h post-CIDR removal, 24 h post-CIDR

removal, 12 h post-oestrus, 48 h post-oestrus, and Day 7 of the cycle) versus the oestrus onset

group (i.e., unpaired-sample statistical model) were then identified using a negative binomial

generalized linear model. Multiple testing correction was done using the Benjamini–Hochberg

(B-H) method [57] with a false discovery rate (FDR)� 0.05. Data visualization was performed

with the R packages ggplot2 (version 2.2.1) [58] and VennDiagram (version 1.6.17) [59].

Pathway analyses of differentially expressed genes

Ingenuity1 Pathway Analysis (IPA) (Qiagen, Redwood City, CA, USA) software package (version

01–07) [60] was used to identify overrepresented (enriched) disease and functions categories,

canonical pathways, interaction networks, and upstream regulators for sets of DEGs at each peri-

oestrus time point (12 h post-CIDR removal, 24 h post- CIDR removal, 12 h post-oestrus, 48 h

post-oestrus, and Day 7 post-oestrus (luteal phase) compared to the onset of oestrus time point.

Results

RNA-seq alignment and summary statistics

Individually barcoded strand-specific RNA-seq libraries generated from B. taurus endometrial

tissue were obtained from 29 animals at six time points. Summary statistics relating to each

individual library are provided in S2 Table. Alignment of the paired-end reads to the B. taurus
reference genome (UMD 3.1.1) yielded mean values per library of 23,968,186 ± 900,849 reads

(n = 29 libraries, ± standard deviation) corresponding to a mean of 95.6% reads mapping to

unique locations in the bovine genome. A mean of 655,128 ± 45,674 reads (2.6%) mapped to

multiple locations in the genome, and a mean of 34,158 ± 8,568 reads (0.14%) multi-mapped

to more than 10 locations in the genome. Finally, a mean of 416,755 ± 58,839 reads (1.66%)

failed to map to any genomic location. The mean mapped length was 179.2 ± 0.15 bp.

A mean value of 21,327,606 reads (80.3%) were assigned to annotated regions of the B. taurus
genome, and 153,681 ± 13,805 reads (0.58%) were assigned to ambiguous or overlapping anno-

tated genomic regions. Unassigned no features reads comprised 9.3%, or 2,486,900 ± 787,328,

while there were 2,611,535 ± 326,596 (9.84%) unassigned multi-mapping reads. For the 29

RNA-seq libraries, filtering of genes expressed at a low level resulted in 16,922 genes of a total of

24,616 annotated B. taurus genes being suitable for differential expression analysis.

Summary of differential gene expression of RNA-seq data

Gene expression for the five different groups was compared to that at the oestrus time point

(Fig 2A). The total number of DEGs at the five time points examined relative to oestrus was
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Fig 2. Visualisation of significantly differentially expressed genes (DEGs). A) The number of DEGs with increased and

decreased expression at each perioestrus time point, relative to expression at the oestrus time point is shown. B) Venn diagram

of numbers of DEGs for the five perioestrus time points relative to oestrus.

https://doi.org/10.1371/journal.pone.0301005.g002
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5,845 out of a total of 16,922 B. taurus genes (34.5%) annotated in RefSeq. Statistical analysis of

the data using edgeR with a B-H FDR-adjusted P (Padj)� 0.05 identified 860 DEGs at 12 h

post-CIDR removal and 333 at 24 h post-CIDR removal. The 12 h post-oestrus time point,

which is closest temporally and in terms of hormone levels to oestrus, gave rise to the lowest

number of DEGs, with only 42 DEGs. At 48 h post-oestrus 940 DEGs were observed and the

largest increase in DEGs was present in the Day 7 post-oestrus sample, which had 3,463 DEGs.

Fig 2B revealed a total of 2,696 of the DEGs out of a total of 3,463 that are unique to the luteal

phase and do not overlap with any of the other five time points, whereas only seven genes were

uniquely differentially expressed at 12 h post-oestrus.

Tables 1–5 list the top upregulated and downregulated genes between each of the perioes-

trus groups in comparison to oestrus. A complete list of DEGs at each time point analysed is

provided in S3 Table.

Several of the genes in each category were defined as uncharacterized. For example, two

of the ten upregulated genes in luteal phase versus oestrus (Table 5) are defined as unchar-

acterized and displayed high log2 fold changes. The majority of the uncharacterized genes

listed in Tables 1 to 5 are defined in the latest reference sequence of the bovine genome

(ARS-UCD1.2; [61]) as non-coding RNAs, with the exception of LOC104972601,

LOC104973104, and LOC104973411, which were withdrawn by NCBI, as the model on

which they were based was not predicted in a later annotation. Of the total DEGs, only three

showed statistically significant differences in expression for each of the five time points ver-

sus oestrus. These were collagen type VI alpha 6 (COL6A6), mucin-6 (LOC101903030) and

angiotensinogen (AGT).

Table 1. Top DEGs in bovine endometrium at 12 h post-CIDR removal versus oestrus, ranked by ascending B-H FDR.

Entrez ID Gene Name Gene Symbol Log2 fold-change P-Value B-H FDR

Upregulated

540267 ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 2 ST8SIA2 2.05 1.90×10−08 1.53×10−05

504960 CD68 molecule CD68 1.93 2.30×10−08 1.70×10−05

514833 C-type lectin domain family 10, member A CLEC10A 4.66 4.47×10−08 2.77×10−05

521133 SEC14-like 3 (S. cerevisiae) SEC14L3 5.82 4.25×10−08 2.77×10−05

527114 angiotensinogen (serpin peptidase inhibitor, clade A, member 8) AGT 4.83 4.00×10−08 2.77×10−05

751788 WC1 isolate CH210 LOC751788 3.81 4.40×10−08 2.77×10−05

527903 V-set and transmembrane domain containing 2 like VSTM2L 2.65 6.38×10−08 3.60×10−05

790164 SLAM family member 7 SLAMF7 2.84 1.27×10−07 6.35×10−05

613715 chromosome 28 open reading frame, human C10orf10 C28H10orf10 3.09 1.66×10−07 7.22×10−05

617478 coiled-coil domain-containing protein C1orf110 homolog C3H1orf110 2.98 2.27×10−07 9.37×10−05

Downregulated

101906058 acyl-CoA desaturase-like LOC101906058 -3.03 2.06×10−14 3.48×10−10

504813 neuropeptide Y receptor Y1 NPY1R -2.62 2.83×10−13 2.05×10−09

509003 nucleobindin 2 NUCB2 -2.28 3.63×10−13 2.05×10−09

280924 stearoyl-CoA desaturase (delta-9-desaturase) SCD -2.8 1.07×10−11 4.53×10−08

534049 family with sequence similarity 213, member A FAM213A -2.77 8.45×10−11 2.86×10−07

767936 purinergic receptor P2Y, G-protein coupled, 14 P2RY14 -2.41 2.78×10−10 7.85×10−07

281356 natriuretic peptide C NPPC -3.69 4.59×10−10 8.62×10−07

286767 parathyroid hormone-like hormone PTHLH -3.08 4.13×10−10 8.62×10−07

538255 hyperpolarization activated cyclic nucleotide-gated potassium channel 1 HCN1 -4.38 4.33×10−10 8.62×10−07

407767 3-hydroxy-3-methylglutaryl-CoA synthase 1 (soluble) HMGCS1 -2.24 8.65×10−10 1.46×10−06

https://doi.org/10.1371/journal.pone.0301005.t001
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Table 2. Top DEGs in bovine endometrium at 24 h post-CIDR removal versus oestrus, ranked by ascending B-H FDR.

Entrez ID Gene Name Gene Symbol Log2 fold-change P-Value B-H FDR

Upregulated

540267 ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 2 ST8SIA2 2.05 1.90×10−08 1.53×10−05

504960 CD68 molecule CD68 1.93 2.30×10−08 1.70×10−05

514833 C-type lectin domain family 10, member A CLEC10A 4.66 4.47×10−08 2.77×10−05

521133 SEC14-like 3 (S. cerevisiae) SEC14L3 5.82 4.25×10−08 2.77×10−05

527114 angiotensinogen (serpin peptidase inhibitor, clade A, member 8) AGT 4.83 4.00×10−08 2.77×10−05

751788 WC1 isolate CH210 LOC751788 3.81 4.40×10−08 2.77×10−05

527903 V-set and transmembrane domain containing 2 like VSTM2L 2.65 6.38×10−08 3.60×10−05

790164 SLAM family member 7 SLAMF7 2.84 1.27×10−07 6.35×10−05

613715 chromosome 28 open reading frame, human C10orf10 C28H10orf10 3.09 1.66×10−07 7.22×10−05

617478 coiled-coil domain-containing protein C1orf110 homolog C3H1orf110 2.98 2.27×10−07 9.37×10−05

Downregulated

101906058 acyl-CoA desaturase-like LOC101906058 -3.03 2.06×10−14 3.48×10−10

504813 neuropeptide Y receptor Y1 NPY1R -2.62 2.83×10−13 2.05×10−09

509003 nucleobindin 2 NUCB2 -2.28 3.63×10−13 2.05×10−09

280924 stearoyl-CoA desaturase (delta-9-desaturase) SCD -2.8 1.07×10−11 4.53×10−08

534049 family with sequence similarity 213, member A FAM213A -2.77 8.45×10−11 2.86×10−07

767936 purinergic receptor P2Y, G-protein coupled, 14 P2RY14 -2.41 2.78×10−10 7.85×10−07

281356 natriuretic peptide C NPPC -3.69 4.59×10−10 8.62×10−07

286767 parathyroid hormone-like hormone PTHLH -3.08 4.13×10−10 8.62×10−07

538255 hyperpolarization activated cyclic nucleotide-gated potassium channel 1 HCN1 -4.38 4.33×10−10 8.62×10−07

407767 3-hydroxy-3-methylglutaryl-CoA synthase 1 (soluble) HMGCS1 -2.24 8.65×10−10 1.46×10−06

https://doi.org/10.1371/journal.pone.0301005.t002

Table 3. Top DEGs in bovine endometrium at 12 h post-oestrus versus oestrus, ranked by ascending B-H FDR.

Entrez ID Gene Name Gene Symbol Log2 fold-change P-Value B-H FDR

Upregulated

282139 arachidonate 15-lipoxygenase ALOX15 3.44 1.25×10−07 2.12×10−03

100297044 C-C motif chemokine 14 LOC100297044 7.94 2.61×10−07 2.21×10−03

527872 potassium voltage-gated channel, subfamily H (eag-related), member 6 KCNH6 4.1 1.48×10−06 6.23×10−03

509102 pipecolic acid oxidase PIPOX 4.61 7.09×10−06 1.20×10−02

525276 ADAM metallopeptidase with thrombospondin type 1 motif, 12 ADAMTS12 2.03 6.63×10−06 1.20×10−02

530102 collagen, type VI, alpha 6 COL6A6 6.94 6.13×10−06 1.20×10−02

515988 signal transducer and activator of transcription 4 STAT4 2.34 1.53×10−05 1.85×10−02

101909328 uncharacterized LOC101909328 LOC101909328 2.1 1.77×10−05 1.87×10−02

534439 PDZ domain containing 1 PDZK1 2.64 1.95×10−05 1.94×10−02

513680 NHS-like 2 NHSL2 1.65 2.50×10−05 2.35×10−02

Downregulated

518974 ATPase, H+ transporting, lysosomal V0 subunit a4 ATP6V0A4 -4.34 5.56×10−07 3.13×10−03

101903030 mucin-6 LOC101903030 -6.57 1.84×10−06 6.23×10−03

516256 tumor necrosis factor receptor superfamily, member 18 TNFRSF18 -4.41 2.59×10−06 7.32×10−03

514039 epithelial cell adhesion molecule EPCAM -1.18 6.66×10−06 1.20×10−02

510137 transmembrane protein 213 TMEM213 -7.09 1.28×10−05 1.81×10−02

539063 carbohydrate (N-acetylglucosamine 6-O) sulfotransferase 4 CHST4 -7.51 1.39×10−05 1.81×10−02

785366 embigin EMB -2.83 1.34×10−05 1.81×10−02

535458 polypeptide N-acetylgalactosaminyltransferase 3 GALNT3 -2.28 1.72×10−05 1.87×10−02

540234 family with sequence similarity 46, member A FAM46A -2.55 3.13×10−05 2.79×10−02

404111 keratin 14 KRT14 -5.87 3.72×10−05 3.00×10−02

https://doi.org/10.1371/journal.pone.0301005.t003
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Table 4. Top DEGs in bovine endometrium at 48 h post-oestrus versus oestrus, ranked by ascending B-H FDR.

Entrez ID Gene Name Gene Symbol Log2 fold-change P-Value B-H FDR

Upregulated

540267 ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 2 ST8SIA2 2.05 1.90×10−08 1.53×10−05

504960 CD68 molecule CD68 1.93 2.30×10−08 1.70×10−05

514833 C-type lectin domain family 10, member A CLEC10A 4.66 4.47×10−08 2.77×10−05

521133 SEC14-like 3 (S. cerevisiae) SEC14L3 5.82 4.25×10−08 2.77×10−05

527114 angiotensinogen (serpin peptidase inhibitor, clade A, member 8) AGT 4.83 4.00×10−08 2.77×10−05

751788 WC1 isolate CH210 LOC751788 3.81 4.40×10−08 2.77×10−05

527903 V-set and transmembrane domain containing 2 like VSTM2L 2.65 6.38×10−08 3.60×10−05

790164 SLAM family member 7 SLAMF7 2.84 1.27×10−07 6.35×10−05

613715 chromosome 28 open reading frame, human C10orf10 C28H10orf10 3.09 1.66×10−07 7.22×10−05

617478 coiled-coil domain-containing protein C1orf110 homolog C3H1orf110 2.98 2.27×10−07 9.37×10−05

Downregulated

101906058 acyl-CoA desaturase-like LOC101906058 -3.03 2.06×10−14 3.48×10−10

504813 neuropeptide Y receptor Y1 NPY1R -2.62 2.83×10−13 2.05×10−09

509003 nucleobindin 2 NUCB2 -2.28 3.63×10−13 2.05×10−09

280924 stearoyl-CoA desaturase (delta-9-desaturase) SCD -2.8 1.07×10−11 4.53×10−08

534049 family with sequence similarity 213, member A FAM213A -2.77 8.45×10−11 2.86×10−07

767936 purinergic receptor P2Y, G-protein coupled, 14 P2RY14 -2.41 2.78×10−10 7.85×10−07

281356 natriuretic peptide C NPPC -3.69 4.59×10−10 8.62×10−07

286767 parathyroid hormone-like hormone PTHLH -3.08 4.13×10−10 8.62×10−07

538255 hyperpolarization activated cyclic nucleotide-gated potassium channel 1 HCN1 -4.38 4.33×10−10 8.62×10−07

407767 3-hydroxy-3-methylglutaryl-CoA synthase 1 (soluble) HMGCS1 -2.24 8.65×10−10 1.46×10−06

https://doi.org/10.1371/journal.pone.0301005.t004

Table 5. Top DEGs in bovine endometrium at Day 7 post-oestrus (luteal phase) versus oestrus, ranked by ascending B-H FDR.

Entrez ID Gene Name Gene symbol Log2 Fold-Change P-Value B-H FDR

Upregulated

101906669 uncharacterized LOC101906669 LOC101906669 11.73 1.73×10−66 2.93×10−62

613835 mitochondrial ribosomal protein S36 MRPS36 4.51 3.61×10−52 3.05×10−48

784029 teratocarcinoma-derived growth factor 1 TDGF1 7.86 2.14×10−44 1.21×10−40

617104 family with sequence similarity 162, member A FAM162A 3.5 3.34×10−40 1.41×10−36

104974435 uncharacterized LOC104974435 LOC104974435 14.27 1.82×10−38 6.16×10−35

614149 nudix (nucleoside diphosphate linked moiety X)-type motif 5 NUDT5 2.41 1.03×10−34 2.50×10−31

287019 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 PFKFB2 3.52 1.64×10−34 3.46×10−31

526200 absent in melanoma 1 AIM1 3.49 7.53×10−34 1.42×10−30

100125309 TSC22 domain family, member 3 TSC22D3 3.06 2.90×10−33 4.90×10−30

617374 proteoglycan 3 PRG3 9.49 3.83×10−33 5.89×10−30

Downregulated

613890 potassium inwardly-rectifying channel, subfamily J, member 16 KCNJ16 -5.77 1.40×10−36 3.95×10−33

533129 ets variant 4 ETV4 -4.77 1.77×10−20 6.80×10−18

534731 EPH receptor B1 EPHB1 -3.95 2.92×10−20 1.03×10−17

506545 claudin 10 CLDN10 -3.44 1.46×10−18 3.81×10−16

104968606 laminin subunit alpha-3-like LOC104968606 -4.43 1.81×10−17 4.01×10−15

531699 aldehyde oxidase 2 AOX2 -8.37 2.16×10−17 4.68×10−15

522184 potassium inwardly-rectifying channel, subfamily J, member 15 KCNJ15 -4.6 4.34×10−17 8.75×10−15

511211 sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican) 1 SPOCK1 -3.8 6.51×10−16 1.05×10−13

100336873 laminin, alpha 3 LAMA3 -3.92 1.18×10−15 1.83×10−13

508204 growth regulation by oestrogen in breast cancer 1 GREB1 -2.7 2.56×10−15 3.76×10−13

https://doi.org/10.1371/journal.pone.0301005.t005
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IPA diseases and functions categories

A total of 70 IPA categories relating to diseases and functions were enriched at 12 h post-

CIDR removal (S4 Table). The top five IPA categories were Cellular movement, Neurological
disease, Cellular growth and proliferation, Cancer, and Organismal injury and abnormalities
(Table 6). For the 24 h post-CIDR removal time point versus oestrus, 73 significant IPA cate-

gories were identified (S4 Table), with the top five being Neurological disease, Psychological dis-
orders, Cardiovascular disease, Ophthalmic disease, and Organismal injury and abnormalities
(Table 6).

At 12 h post-oestrus, there were 65 significant IPA diseases and functions categories (S4

Table), the most significant of which were Cellular development, Cellular growth and prolifera-
tion, Hematological system development and function, Lymphoid tissue structure and develop-
ment, and Cell-to-cell signaling and interaction. Seventy-five IPA diseases and functions

categories were identified at 48 h post-oestrus (S4 Table), with the top five being Cancer,
Organismal injury and abnormalities, Immunological disease, Connective tissue disorders and

Inflammatory disease (Table 6).

Finally, at Day 7 post-oestrus (luteal phase) 70 significant categories of diseases and disor-

ders were identified (S4 Table). Of these, the top five most significant were Cellular growth and
proliferation, Cancer, Organismal injury and abnormalities, Cellular movement, and Molecular
transport (Table 6).

IPA canonical pathways

The most prominent IPA pathways for each time point relative to oestrus are shown in Fig 3.

Forty-three canonical pathways were significantly over-represented at 12 h post-CIDR

removal (S5 Table). Three of these had a positive z-score, indicating that they displayed

Table 6. Top five diseases and functions categories and canonical pathways based on DEGs from each perioestrous time point versus the onset of oestrus.

Time point Top disease and functions categories Top canonical pathways

12 h post-CIDR removal 1 Cellular movement
2 Neurological disease
3 Cellular growth and proliferation
4 Cancer
5 Organismal injury and abnormalities

1 Axonal guidance signaling
2 Superpathway of cholesterol biosynthesis
3 Superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate)
4 PCP pathway
5 Colorectal cancer metastasis signaling

24 h post-CIDR removal 1 Neurological disease
2 Psychological disorders
3 Cardiovascular disease
4 Opthalmic disease
5 Organismal injury and abnormalities

1 HIF1α signaling
2 Axonal guidance signaling
3 Amyotrophic lateral sclerosis signaling
4 Hepatic fibrosis/hepatic stellate cell activation
5 Clathrin-mediated endocytosis signaling

12 h post-oestrus 1 Cellular development
2 Cellular growth and proliferation
3 Hematological system development and function
4 Lymphoid tissue structure and development
5 Cell-to-cell signaling and interaction

1 Lysine Degradation V
2 Glycine betaine degradation
3 IL-12 signaling and production in macrophages
4 Endoplasmic reticulum stress pathway

48 h post-oestrus 1 Cancer
2 Organismal injury and abnormalities
3 Immunological disease
4 Connective tissue disorders
5 Inflammatory disease

1 Superpathway of cholesterol biosynthesis
2 Cholesterol biosynthesis I
3 Cholesterol biosynthesis II (via 24,25-dihydrolanosterol)
4 Cholesterol biosynthesis III (via desmosterol)
5 LXR/RXR activation

Day 7 post- oestrus (luteal phase) 1 Cellular growth and proliferation
2 Cancer
3 Organismal injury and abnormalities
4 Cellular movement
5 Molecular transport

1 Hepatic fibrosis/hepatic stellate cell activation
2 Axonal guidance signaling
3 LPS/IL-1 mediated inhibition of RXR function
4 Fatty acid β-oxidation I
5 Role of osteoblasts, osteoclasts and chondrocytes in rheumatoid arthritis

https://doi.org/10.1371/journal.pone.0301005.t006
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activation (PCP or planar cell polarity pathway; Colorectal cancer metastasis signaling and

Basal cell carcinoma signaling). At 24 h post-CIDR removal, 20 over-represented canonical

pathways were identified (S5 Table) and the top pathways were HIF1α signaling, Axonal guid-
ance signaling, Amyotrophic lateral sclerosis signaling, Hepatic fibrosis/hepatic stellate cell acti-
vation, and Clathrinid-mediated endocytosis signaling.

Fig 3. IPA analysis showing the over-represented canonical pathways at the five time points relative to oestrus. Pathways associated with significantly

modulated genes are shown on the x axis of each bar graph and the -log significance is shown on the y axis. The functions are listed from most significant to less

significant (indicated by bar height). Orange bars denote a positive z score, blue bars denote a negative z score. An orange horizontal line denotes the threshold

for significance, i.e. p = 0.05. The ratios, which are the number of genes that are modulated in a given pathway divided by the total number of genes in the

pathway, are shown on the right-hand side y axis. A) 12 h post-CIDR removal, B) 24 h post-CIDR removal, C) 12 h post-oestrus, D) 48 h post-oestrus, E) Day 7

post-oestrus (luteal phase).

https://doi.org/10.1371/journal.pone.0301005.g003
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At 12 h post-oestrus, only four canonical pathways were over-represented (S5 Table, Fig 3).

These were Lysine degradation V, Glycine betaine degradation, IL-12 signaling and production
in macrophages, and Endoplasmic reticulum stress pathway (Fig 5). A total of 46 over-repre-

sented canonical pathways at 48 h post-oestrus (S5 Table) included: Superpathway of choles-
terol biosynthesis, Cholesterol biosynthesis I, Cholesterol biosynthesis II, Cholesterol biosynthesis
III, and LXR/RXR activation.

At Day 7 post-oestrus (luteal phase), 124 canonical pathways were significantly over-repre-

sented. The top five were Hepatic fibrosis/hepatic stellate cell activation, Axonal guidance sig-
naling, LPS/IL-1 mediated inhibition of RXR function, Fatty acid β-oxidation I, and Role of
osteoblasts, osteoclasts and chondrocytes in rheumatoid arthritis.

IPA interaction networks

Overall, all perioestrus time points revealed interaction networks involved in similar disease

and functions categories such as Organismal injuries and abnormalities, Cancer, and Neurolog-
ical disease (S6 Table).

At the 12 h post-CIDR time point, 25 interaction networks were identified. The top ranked

network had 27 focus molecules, with three genes being upregulated (ATP12A, KSR2, and

SPINK7) and the NF-κB complex was at the centre of this network (Fig 4). At 24 h post-CIDR

removal, the top interaction network (out of a total of 20) had 26 focus molecules and was also

centred on the NF-κB complex (Fig 5).

For the 12 h post-oestrus time point, a total of three interaction networks were identified

and the top interaction network, again centred on the NF-κB complex, had 17 focus molecules

(Fig 6).

At 48 h post-oestrus there was an increase in significant interaction networks. A total of 25

interaction networks were identified, and the top interaction network had 32 focus molecules

(Fig 7). This network was not centred on one gene, but had several hub genes, as did the net-

work for the Day 7 post-oestrus (luteal phase) time point, for which a total of 25 interaction

networks were identified, with the top network presenting 35 focus molecules (Fig 8).

IPA upstream regulators

For the 12 h post-CIDR removal time point, analysis revealed 1,125 upstream regulators (S7

Table). The most highly ranked, by ascending P-value, were β-estradiol, TNF, TGF- β1,

HDAC (group of histone deacetylases), and the transcription regulator TWIST1 (Table 7). At

the 24 h post-CIDR removal time point, the 462 upstream regulators identified (S7 Table) also

included HDAC, TGF- β1, and TNF among the top ranked (Table 7).

At 12 h post-oestrus, a total of 107 upstream regulators were identified (S7 Table) that

included aldosterone, ESR2 (oestrogen receptor), LHX1 (transcription regulator), TGF- β1,

and the drug ciprofibrate as highly ranked (Table 7). At 48 h post-oestrus, the top five

upstream regulators were β-oestradiol, the drug dexamethasone, XBP1 (a transcriptional regu-

lator), TGF-β1, and cholesterol (Table 7), with a total of 1,144 upstream regulators (S7 Table).

Seven days after oestrus (luteal phase), the number of significant upstream regulators rose to

1,693 (S7 Table) and among the top ranked regulators were β-oestradiol, TGF- β1, dexametha-

sone, progesterone, and TNF (Table 7).

Discussion

This study concentrated specifically on the endometrial transcriptome during the perioestrus

period and as expected, we observed significant and wide-ranging alterations to the transcrip-

tome. In particular, immune-related changes, as well as alterations that could be re-interpreted
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as tissue remodelling in this context were evident. The immune-related variations in gene

expression would correlate with the time when sperm and seminal fluid would be introduced

by mating. Numerous studies of the bovine endometrial transcriptome have focused on fertil-

ity, rather than the dynamic changes that occur throughout the cycle. Several studies of the

effect of the peri-ovulatory endocrine environment on bovine endometrium have been per-

formed at Days 4 and 7 post-induction of ovulation, which overlaps with the Day 7 time point

in this study [17,62,63], but the changes closer to oestrus have undergone less exploration.

Previous studies of the endometrial transcriptome have applied microarray and RNA-seq

techniques [3,19,64], some of which focus on differences in fertility [65–67] rather than differ-

ences related to precise times in the cycle. In this study, the overall gene expression trend

Fig 4. Top IPA gene interaction network at 12 h post-CIDR removal versus oestrus. Network 1 is involved in Endocrine system disorders, Hereditary
disorders, and Organismal injury and abnormalities (score 34, with 27 focus molecules). The relationship is described as either a direct interaction (solid line) or

an indirect interaction (dashed line), whereas the intensity of the colour indicates the level of upregulation (red) or downregulation (green) of the respective

molecules. Reprinted from Qiagen IPA under a CC BY license, with permission from Qiagen, original copyright 2017.

https://doi.org/10.1371/journal.pone.0301005.g004
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(Fig 2) had parallels with the fluctuations in numbers of DEGs observed in the cervix for the

same animals by Pluta et al. [40] and Pluta [68] in which DEGs were highest at Day 7 post-oes-

trus and lowest for the oestrus +12 h time point. In this study, the lowest number of DEGs (42)

was seen at 12 h post-oestrus—when the hormonal environment is very similar to that at oes-

trus—and the highest number (3,463) was observed at Day 7 post-oestrus (luteal phase). This

indicates a significant response to the elevation in P4 between Day 2, when it is very low, simi-

lar to that at oestrus [40], and Day 7 of the cycle, when P4 is high. The samples from the cervi-

ces of the same animals showed a similar pattern in terms of relative numbers of DEGs, with

339 genes downregulated and 3,798 upregulated at Day 7. In particular, innate and adaptive

immunity pathways were upregulated in cervix at the oestrus +48 h time point [68].

Fig 5. Top IPA gene interaction network at 24 h post-CIDR removal versus oestrus. Network 1 is involved in Neurological disease, Nervous System
Development and Function and Behaviour (score 45, with 26 focus molecules). The relationship is described as either a direct interaction (solid line) or an

indirect interaction (dashed line), whereas the intensity of the colour indicates the level of upregulation (red) or downregulation (green) of the respective

molecules. Reprinted from Qiagen IPA under a CC BY license, with permission from Qiagen, original copyright 2017.

https://doi.org/10.1371/journal.pone.0301005.g005
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This study examines the endometrium in its entirety, and not individual cell types. More

recent work investigating individual cell types showed that three different cell types isolated

from bovine endometrium by laser microdissection at Day 15 of the oestrous cycle demon-

strated different molecular signatures for luminal and glandular epithelium, as well as for stro-

mal cells, which showed the greatest differences in gene expression [69]. Differences in these

cell types were equally pronounced in post-partum bovine endometrium, and progesterone

gave rise to different patterns of expression in the three cell types [70].

Fig 6. Top IPA gene interaction network at 12 h post-oestrus versus oestrus. Network 1 is involved in Organ Development, Reproductive System
Development and Function and Cell Death and Survival (score 40, with 17 focus molecules). The relationship is described as either a direct interaction (solid

line) or an indirect interaction (dashed line), whereas the intensity of the colour indicates the level of upregulation (red) or downregulation (green) of the

respective molecules. Reprinted from Qiagen IPA under a CC BY license, with permission from Qiagen, original copyright 2017.

https://doi.org/10.1371/journal.pone.0301005.g006
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The variations that we observed were also shown by Bauersachs et al. [64] and Mitko et al.

[3] but these showed significant temporal expression variations between Day 0 and Day 12,

extending to Day 18 for the latter study, which fell well beyond the time period encompassed

by this study. Forde et al. [31] identified 3,969 DEGs between Days 7 and 13, whereas the

Fig 7. Top IPA gene interaction network at 48 h post-oestrus versus oestrus. Network 1 is involved in Connective Tissue Disorders, Developmental Disorder
and Hereditary Disorder (score 44, with 32 focus molecules). The relationship is described as either a direct interaction (solid line) or an indirect interaction

(dashed line), whereas the intensity of the colour indicates the level of upregulation (red) or downregulation (green) of the respective molecules. Reprinted

from Qiagen IPA under a CC BY license, with permission from Qiagen, original copyright 2017.

https://doi.org/10.1371/journal.pone.0301005.g007
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comparison between Days 5 and 7 yielded only seven DEGs, implying little change in gene

expression over that time. While all these studies, along with the present study, all illustrate

clear differences in expression that are dependent on time and on hormonal environment,

there have been fewer studies of the precise nature of these differences immediately preceding

and post-oestrus.

Fig 8. Top IPA gene interaction network at Day 7 post-oestrus (luteal phase) versus oestrus. Network 1 is involved in Cellular Assembly and Organization,

Developmental Disorder, Nervous System Development and Function (score 32, with 35 focus molecules). The relationship is described as either a direct

interaction (solid line) or an indirect interaction (dashed line), whereas the intensity of the colour indicates the level of upregulation (red) or downregulation

(green) of the respective molecules. Reprinted from Qiagen IPA under a CC BY license, with permission from Qiagen, original copyright 2017.

https://doi.org/10.1371/journal.pone.0301005.g008
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This work showed significant differences in the overall pre- and post-oestrus patterns of

expression of both individual genes and at a pathway and regulatory level. At a gene level,

three genes were differentially expressed across each of the five perioestrus time points

(S3 Table): collagen type VI alpha 6 (COL6A6), mucin-6 (LOC101903030), and angiotensino-

gen (AGT). COL6A6 was upregulated at all time points, displaying the largest log2 fold-change

at Day 7 post-oestrus (luteal phase) (+9.05). Collagens are diverse and are involved in organiz-

ing the extracellular matrix in the endometrium of pregnant bovines, as well as participating in

signalling and adhesion [46]. Collagen VI forms a subepithelial and pericellular fibril sheet in

both superficial and deep bovine endometrium, linking cells to the collagen fibril network and

localizing around capillaries and smooth muscle cells [71]: therefore, in this case it could have

a function in reorganizing cells, particularly the vasculature of the endometrium during this

period. However, its expression is low (log2 CPM 0.0597 at Day 7) so variations in expression

of other collagen genes may be of more biological relevance.

The mucin 6, oligomeric mucus/gel-forming gene (MUC6, LOC101903030) encodes a

secreted gel-forming mucin, and its expression was downregulated across almost all perioes-

trus time points, except for Day 7 post-oestrus (luteal phase), where it was upregulated

(S3 Table). This gene was not expressed in cervical tissues from the same animals at any time

point [40]. A similar trend in MUC6 expression was observed in human endometrium, with

lower expression in proliferative endometrium, but not in menstrual or secretory endome-

trium [72]. MUC6 is strongly expressed in the human stomach and pancreas and appears to

have a protective effect against acid and proteolytic digestion in stomach [73]. In bovine endo-

metrium it may have a protective function after oestrus, when the endometrial thickness is rel-

atively low compared to that before oestrus [74].

Table 7. The five top IPA upstream regulators, based on DEGs from each of the perioestrous time points versus the onset of oestrus.

Time point Top upstream regulators Molecule type Predicted activation state P-value

12 h post-CIDR removal 1 ß-estradiol

2 TNF

3 TGF-ß1

4 HDAC

5 TWIST1

1 Chemical endogenous

2 Cytokine

3 Growth factor

4 Group of histone deacetylases

5 Transcription regulator

1 Activated

2 Activated

3 Neutral

4 Neutral

5 Neutral

6.41×10−21

9.74×10−15

5.99×10−12

8.33×10−12

2.79×10−10

24 h post-CIDR removal 1 HDAC

2 TGF-ß1

3 TNF

4 Genistein

5 Thioacetamide

1 Group of histone deacetylases

2 Growth factor

3 Cytokine

4 Chemical drug

5 Chemical toxicant

1 Neutral

2 Neutral

3 Neutral

4 Neutral

5 Neutral

6.08×10−08

1.26×10−07

3.02×10−06

4.14×10−06

1.19×10−05

12 h post-oestrus 1 Aldosterone

2 ESR2

3 LHX1

4 TGF-ß1

5 Ciprofibrate

1 Chemical endogenous

2 Ligand-dependent nuclear receptor

3 Transcription regulator

4 Growth factor

5 Chemical drug

1 Neutral

2 Neutral

3 Neutral

4 Neutral

5 Neutral

3.88×10−05

4.35×10−04

5.60×10−04

6.71×10−04

1.49×10−03

48 h post-oestrus 1 ß-estradiol

2 Dexamethasone

3 XBP1

4 TGF-ß1

5 Cholesterol

1 Chemical endogenous

2 Chemical drug

3 Transcription regulator

4 Growth factor

5 Chemical endogenous

1 Inhibited

2 Neutral

3 Inhibited

4 Neutral

5 Activated

3.53×10−24

3.93×10−22

3.43×10−16

2.79×10−14

1.87×10−13

Day 7 post- oestrus (luteal phase) 1 ß-estradiol

2 TGF-ß1

3 Dexamethasone

4 Progesterone

5 TNF

1 Chemical endogenous

2 Growth factor

3 Chemical drug

4 Chemical endogenous

5 Cytokine

1 Inhibited

2 Inhibited

3 Neutral

4 Neutral

5 Inhibited

1.42×10−34

2.40×10−32

1.52×10−31

1.38×10−30

3.13×10−28

Molecule types, predicted activation state and p-values denoting significance are shown for each upstream regulator.

https://doi.org/10.1371/journal.pone.0301005.t007
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In contrast, the angiotensinogen gene (AGT) was upregulated at all perioestrus time points,

with the largest log2-fold increase relative to oestrus seen at Day 7 post-oestrus (+9.43)

(S3 Table). This gene encodes pre-angiotensinogen, a component of the renin-angiotensin sys-

tem, cleaved by renin to angiotensin I and further cleaved to the active enzyme angiotensin II.

which promotes cell proliferation, angiogenesis, fibrosis, migration, and invasion [75]. Shimizu

et al. [35] demonstrated that AGT was part of a gene cluster downregulated by E2 and upregu-

lated by P4, in accordance with elevated expression at Day 7 in this study. An analysis of data

from the cervices of the same animals also showed differences in AGT expression, which was

elevated in the luteal phase relative to the follicular phase [42]. In human endometrial stromal

cells, decidualization was associated with an increase in expression of prorenin and other com-

ponents of the renin-angiotensin system [76], suggesting that AGT upregulation is essential to

facilitate decidualization. AGT increases nitric oxide production in endothelial cells of the ovine

fetoplacental artery, implying a role in endothelial development and vasoconstriction [77].

Tissue remodelling and innervation in the proliferative phase

The thickness of the bovine endometrium increases during the follicular phase in an induced

oestrus cycle [78]. In addition, the uterine wall thickness was shown to increase as the corpus

luteum regressed, and decreased after ovulation [79], accompanied by more frequent cell divi-

sions in the epithelium and stroma during the proliferative phase, with more ciliated epithelial

cells and endometrial gland branching [15]. The changes in gene expression observed in the

pre-oestrus timepoints of the present study support these changes.

For example, some of the top disease and functions categories, and canonical pathways at

12h post-CIDR removal (Table 6) facilitate endometrial cell proliferation. Proliferating cells

move to enable increase in cell numbers and thickness of the endometrium [74], and we

hypothesize that this is represented by the Cellular movement, Cellular growth and prolifera-
tion, Cellular Development and Tissue Development categories (S4 Table). Common to these

four categories are the genes DPYSL2 and DBN1, while NTN1 appears in the first two. NKD1,

COL14A1, and ADAMTS8 also appear frequently in the 12 top ranked IPA categories. DPYSL2
appears in 14 of the top 25 categories. DBN1 encodes an actin-binding protein involved in

neural growth, and NKD1 encodes a protein that negatively regulates the Wnt/β-catenin sig-

nalling pathway [80] which is hormonally regulated in the uterus [81]. In terms of canonical

pathways, the activation of the Planar cell polarity pathway (PCP, Fig 3A) is key to establishing

cellular asymmetry and a functional barrier regulating intercellular adhesion, signalling, and a

functional cytoskeleton, and in human endometrium, the planar polarity is lost in luminal epi-

thelium by the mid-secretory phase of the menstrual cycle, which allows for receptivity [82]

and which may be its role in this case.

Changes in innervation may be reflected by the appearance of DPYSL2 and NTN1, which

were both part of the Axonal guidance signaling canonical pathway, ranked number 1 for

CIDR+12h and number 2 for CIDR+24h. (S5 Table). DPYSL2 encodes the dihydropyrimidi-

nase like 2 protein—a member of the collapsin response mediator protein family—which

interacts with calcium channels and is required for normal axonal outgrowth [83]. NTN1
encodes netrin-1—an axonal guidance regulatory protein—which guides axons to their final

destination [84], and in human endometrium, netrin-1 may be involved in changing endome-

trial gland architecture from a proliferating to a secretory phase [85]. Oestradiol can affect neu-

ronal function in different ways, for example by stimulating neurite growth, modulating the

expression of neurotransmitters and controlling the survival of neurons [86], but in many

mammalian species, the endometrium is not well innervated: for example, in human endome-

trium, nerve fibres are only present in the basal layer [87].
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It is also noteworthy in this context that the ST8SIA2 gene is upregulated at the time points

prior to oestrus. This gene encodes a sialyltransferase that makes polysialic acid, which is asso-

ciated with several proteins, including the neural cell adhesion molecule (NCAM), as well as

with a range of immune cells [88]. All these changes are consistent with alterations in innerva-

tion of the endometrium and changes that facilitate contractility.

At 24 h post-CIDR removal (Table 6) the Neurological disease and Organismal injury and
abnormalities categories were also enriched, and the eNOS signaling pathway was downregu-

lated at 24 h post-CIDR removal (S5 Table). In female horses, there is a dose-dependent inhibi-

tory effect of nitric oxide (NO) on uterine contractility, and it was proposed that NO could

diffuse into the myometrium and decrease contractility [89]. The most highly ranked canoni-

cal pathway at the CIDR+24 h time point was HIF1α signaling (Table 6). HIF1α is the main

regulator of adaptation to hypoxia, upregulating genes essential for cell survival and vasculari-

zation. In humans, it is needed for repair of the endometrial surface after menstruation occurs

[90]. In our dataset, NOS1, MMP14, VEGFB, MMP11, PIK3R2, ELOC, and PGF are all associ-

ated with this pathway (S5 Table). Matrix metalloproteases are involved in extracellular matrix

breakdown, while VEGFB encodes a vascular endothelial growth factor. These processes are all

essential for endometrial remodelling.

The Hepatic fibrosis/hepatic stellate cell activation pathway is listed as one of the five top

canonical pathways for the CIDR +24 h time point. This was also observed to be activated by

[91] in their study of follicular stage endometrium. This pathway in liver leads to wound heal-

ing and deposition of extracellular matrix components: it is also driven by TGF-β signalling

[92] and in our study included the genes IGF1, EDNRB, VEGFB, MYL6B, PDGFD, COL6A6,

and PGF.

For both time points before oestrus, transforming growth factor beta 1 (TGF-β1), the cyto-

kine tumour necrosis factor (TNF), and HDAC (group of histone deacetylases) were among

the top ranked upstream regulators (Table 7). TGF-β1 is required for the development of

smooth muscle in the female reproductive tract [93], as well as being present in seminal fluid

and altering the endometrium and oviduct to promote embryonic development and implanta-

tion [94]. In humans, expression of TNF has also been shown to rise in the mid- to late-prolif-

erative phases [95], while in bovine endometrial cells, TNF-induced production of

chemokines [96], directs the migration of leukocytes to inflammation sites [97]. This observa-

tion is consistent with the upregulation of genes associated with immunity seen at the pre-oes-

trus timepoints. These genes include CLEC10A, a gene encoding a C-type lectin domain-

containing protein that is a marker for human CD1c+ dendritic cells that enhance TLR 7/8 –

induced cytokine secretion [98] and SLAMF7, which encodes a receptor that regulates the acti-

vation of natural killer cells in humans [99]. These observations suggest that endometrial

immunity is upregulated at this timepoint, actively preparing for sperm deposition and patho-

gen entry. The top interaction networks for CIDR + 12 h and CIDR +24 h are centred on the

transcription factor NFκB complex (Figs 4 and 5) although these are different networks. For

the CIDR+12 h top network, involved in Endocrine system disorders, Hereditary disorders and
Organismal injury and abnormalities, NF-κB is linked to various hub genes, such as SUSD4,

which negatively regulates complement activation, and ALDH1B1, which links to various alde-

hyde dehydrogenases. The top network for CIDR+24 h is Neurological disease, Nervous System
Development and Function and Behavior, with links to voltage-dependent Na+ channels and

SYN genes, encoding synapsins that are associated with the trafficking of synaptic vesicles.

Histone deacetylases, listed as upstream regulators at the CIDR +12 h and CIDR +24 h time

points (Table 7) remove acetyl groups from lysine residues of histones, thereby making DNA

less accessible to transcription factors and repressing transcription of genes. Suppression of

these enzymes can induce apoptosis, cell cycle arrest, and differentiation. TWIST1 is listed as a
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transcriptional regulator at CIDR +12 h: this gene is associated with cancer metabolism and

regulates the epithelial-to-mesenchymal transition [100]. The role of these regulators is consis-

tent with the top diseases and functions categories that include Cancer, Cellular growth and
proliferation and Organismal injury and abnormalities, supporting the cellular growth essential

to the increased endometrial thickening observed in the bovine follicular phase in both natural

and induced oestrus [74].

Changes occurring post-oestrus

Gene expression at the 12 h post-oestrus time point shows little variation compared to that at

oestrus, with a total of 42 DEGs between the time points. This is similar in terms of relative

numbers of DEGs to observations of cervical tissue, in which only 28 transcripts were downre-

gulated and 259 upregulated compared to the remaining groups [68]. At 12 h post-oestrus

only four IPA canonical pathways appear in the dataset: Lysine degradation V, Glycine Betaine
degradation, IL-12 Signaling and production in macrophages, and Endoplasmic reticulum stress
pathway. The gene PIPOX is associated with both the Lysine Degradation V and Glycine Beta-
ine degradation pathways, encoding pipecolic acid oxidase. This gene is upregulated in repeat

breeder cows, compared to non-repeat breeder cows during the mid-luteal phase [65], is

involved in the metabolism and degradation of sarcosine and L-pipecolic acid and has been

hypothesized to protect cells from oxidative stress [101], which may also be its function in

endometrium, promoting cell survival. In this environment, activated neutrophils could

potentially damage tissues with release of reactive oxygen species. This protection would be in

line with the hypothesis that the endometrium undergoes transcriptional alterations to prepare

for sperm movement through the uterus towards the oviducts after mating and to protect it

from entry of pathogens.

The Endoplasmic reticulum stress pathway is also present among the IPA canonical path-

ways highlighted at oestrus +12h, with downregulation of some of the genes in the pathway

(S4 Table). The ER stress pathway is inhibited by E2 in human endometrial cells [102], and as

E2 levels are high, comparable to oestrus, this would be consistent with the results in our data-

set. Studies of human endometrium [103] showed that E2 can regulate the levels of the heat

shock protein GRP78, a component of the UPR, that is suppressed during the E2-dominated

phases of the cycle, which may contribute to angiogenesis, cell proliferation, apoptosis, and

protein secretion [103].

Inflammatory response post-oestrus

Inflammation is an essential component of the oestrous cycle. When sperm arrive in the uterus

after mating, the majority of the sperm cells are removed through phagocytosis by polymor-

phonuclear leukocytes, while these cells remove the debris and bacteria introduced by mating

[12]. The introduction of seminal plasma upregulates inflammatory mediators in the bovine

endometrium [104] indicating that this is also an essential process required to protect the

uterus and promote fertility. Male fertility can affect this response, with insemination by high-

fertility bulls causing alterations in the transcriptomic response relative to these induced by

low-fertility bulls, particularly with respect to immune system genes [37].

However, the present study reveals mediation of the inflammatory response in the absence

of sperm or seminal plasma through the enrichment of the IL-12 signaling and production in
macrophages pathway at 12 h post-oestrus (Table 6). This pathway is involved in the upregula-

tion of STAT4, interferon-gamma production, and a Th1 response that kills bacteria [105].

Our data showed that STAT4 expression was upregulated at 12 h post-oestrus (Table 3), and it

appears consistently among the genes associated with numerous IPA diseases and functions
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categories (S4 Table). Among the top DEGs at oestrus +12 h was ALOX15. This gene encodes

arachidonate 12/15 lipoxygenase, constitutively expressed in uterus, which not only metabo-

lizes arachidonic acid, leading to synthesis of products that can regulate and enhance angio-

genesis [106] but affects macrophages, promoting synthesis of phospholipid oxidation

products that help to remove apoptotic cells, and lipid precursors required to make pro-resolv-

ing mediators involved in inflammation resolution [107]. Another top DEG at the oestrus +12

h time point was LOC100297044, predicted to encode CXCL14, a cytokine which in vitro stim-

ulates uterine natural killer (NK) cells. Administration of this cytokine led to a chemoattractive

effect that caused NK cells to cluster around uterine epithelial glands [108]. This cytokine was

hypothesized to be important in protecting the host from pathogens, as well as playing a role

in decidualization and reconstruction of blood vessels [109] and would thus be consistent with

increased immune activity at this time point.

Lipid metabolism

Lipid metabolism is an important theme that emerges from our dataset. At the CIDR +12h

time point, the Superpathway of cholesterol biosynthesis and Superpathway of geranylgeranyl
diphosphate biosynthesis I (via mevalonate) canonical pathways are in an activated state (Tables

6 and S5). Production of cholesterol at this stage would facilitate formation of cell membranes

as well as hormone biosynthesis. Pathways relating to immune surveillance and lipid metabo-

lism dominate the data at 48 h post-oestrus relative to oestrus, with the appearance of Immu-
nological disease and Inflammatory disease among the top five IPA diseases and functions

categories (Table 6), while the top ten include Inflammatory response and Immune Cell Traf-
ficking (S4 Table). This suggests that even in the absence of sperm, endometrial immunity is

boosted to provide an environment that defends robustly against introduction of sperm and

microorganisms in the period directly after mating. This is consistent with the observation

that in cervical samples from the same animals, multiple innate and adaptive immunity path-

ways are activated at 48 h post-oestrus, including the NK pathway, NOD and TOLL-related

innate immune effector pathways [68] suggesting a coordinated response along the reproduc-

tive tract. The upregulation of immune-related genes at this time point (Table 4), such as

CD68, encoding a scavenger receptor found on macrophages, and SLAMF7, which is involved

in regulating and connecting elements of the innate and adaptive immune responses, activat-

ing cytotoxic cells and suppressing inflammation in sepsis [110] is in line with the pathway

analysis.

At the same time, there is strong representation of pathways related to cholesterol biosyn-

thesis in the IPA top canonical pathways. Four of the top five belong in this category, with the

fifth being LXR/RXR activation. A significant proportion of the genes in these pathways are

downregulated (39% in the Superpathway of Cholesterol Biosynthesis, shown in S4 Table) and

among the top 10 downregulated DEGs in Table 4 is HMGCS1 (3-hydroxymethylglutaryl-CoA

synthase). Liver X receptors (RXR) play an important role in controlling lipid metabolism at a

transcriptional level, modulating cholesterol and fatty acid metabolism, and activating choles-

terol sensors [111]. They also modulate immune responses in macrophages. Agonists of this

receptor promote cholesterol efflux and inhibit inflammatory processes in vivo [112]. LXR

activation promotes fatty acid biosynthesis through pathways that lead to activation of fatty

acid synthase (FASN) and stearoyl-coenzyme A desaturase (SCD1) [111]. The top IPA canoni-

cal pathway of LXR/RXR activation is clearly downregulated (Fig 3), implying that downregu-

lation of lipid metabolism and upregulation of inflammatory processes occurs at this point.

In our data, the IPA analysis demonstrated that cholesterol was among the top five

upstream regulators ranked at 48 h post-oestrus and was in an activated state, in contrast to
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the other four identified at that time point (Table 7). Other enriched upstream regulators

included SREBF2 and SCAP (S7 Table), which form a complex in the endoplasmic reticulum

membrane and control cholesterol homeostasis [113].

In our study, there was downregulation of HMGCS1, which encodes an enzyme essential for

cholesterol synthesis, and SCD, which encodes stearoyl CoA desaturase, an endoplasmic reticu-

lum enzyme that catalyses the rate-limiting step in formation of monounsaturated fatty acids.

In normal human endometrium this enzyme is highly expressed in the proliferative phase; its

knockdown induced apoptosis and decreased the growth of endometrial cancer cells [114].

In addition, studies of the endometrial transcriptome from other species support the idea

that lipid metabolism and immune signalling are important at this time. For example, Kim

et al. [115] studied the porcine ovary, endometrium, and oviduct transcriptomes throughout

the oestrous cycle and found that KEGG pathways relating to immune signalling, biological

oxidation, and acute inflammatory response were enriched, indicating that upregulation of

these pathways may occur across species, not just cattle.

Lipid synthesis pathways were shown to be essential to provide lipids in uterine histotroph

during lactation, as well as regulating the biology of the conceptus at the time of elongation

[116]. A recent machine-learning study of multiple transcriptome datasets seven days post-

oestrus comparing receptive and non-receptive animals showed down-regulation of lipid

modification and fatty acid oxidation [117]. This study also showed that cell cycle processes

were downregulated, whereas apoptosis, regulation of apoptosis and Wnt receptor signalling

were upregulated [117].

Day 7 post-oestrus (luteal phase)

The transition to dioestrus (represented in our data by the Day 7 post-oestrus relative to the

oestrus time point) is characterised by a major change in hormonal environment and in endo-

metrial morphology. The area represented by gland ducts increases [15], consistent with a

secretory state, and longer microvilli and secretory droplets appear in the apical cytoplasm

[118]. In our data, the IPA diseases and functions categories included Cancer and Organismal
injury and abnormalities, as seen at the 48 h post-oestrus timepoint. However, Cellular move-
ment and Molecular transport now appear among these categories, consistent with the transi-

tion to a secretory state.

The highest ranked IPA diseases and functions at this time point relative to oestrus are Cel-
lular movement, Neurological Disease, and Cellular Growth and Proliferation (Table 6). These

categories include the genes DPYSL2, and DBN1, which encodes a cytoplasmic actin-binding

protein involved in neural growth, which is elevated in human endometrium under high P4

[119]. The top IPA interaction network at Day 7 post-oestrus is involved in Cellular Assembly
and Organization, Developmental Disorder, Nervous system Development and Function (Fig 8),

consistent with these findings.

The observed changes are reflected in the top IPA over-represented canonical pathways,

which include Hepatic Fibrosis/Hepatic Stellate Cell Activation and Axonal Guidance Signaling.
The next over-represented canonical pathway is clearly downregulated (Fig 3) and is LPS/IL-1
Mediated Inhibition of RXR Function. This is illustrative of downregulation of the immune sys-

tem at this time in the cycle. LXR/RXR regulate lipid synthesis and transport, induce genes

involved in cholesterol transport, and modulate immune and inflammatory responses in mac-

rophages, inhibiting inflammation in vivo [112]. LPS and IL-1 are pro-inflammatory, inhibit-

ing RXR, so the opposite effect is seen to that at the 48h post-oestrus time point.

At the level of individual DEGs (Table 5) the upregulation of TSC22D3, which encodes an

immunosuppressive transcriptional regulator [120], is also consistent with inhibition of
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inflammation. The changes in endometrial structure are illustrated clearly by the downregu-

lated DEGs. These include CLDN10, encoding a tight junction component, LAMA3, encoding

alpha-laminin 3, which regulates cell growth and motility and acts as an adhesin, connecting

two layers of basement membrane, and SPOCK1, involved in cell-cell and cell-matrix interac-

tions. The highest ranked DEGs in terms of log2 fold change are LOC101906669 and

LOC104974435, which are currently uncharacterized bioinformatically predicted gene loci in

the NCBI Gene database.

Along with this, canonical pathways including Role of osteoblasts, osteoclasts and chondro-
cytes in rheumatoid arthritis and Fatty acid β-oxidation I were enriched at Day 7 post-oestrus

(Table 6). IPA analysis demonstrated that the second most highly ranked network at Day 7

post-oestrus was involved with Amino acid metabolism (S6 Table). The concentrations of

amino acids in the uterine lumen vary with day of the oestrus cycle, with glycine and taurine

being most abundant, and the availability of amino acids in the uterine lumen appears to be

essential to allow an embryo to survive and develop [121]. Glycine may help to regulate the

pH, and this study suggested that taurine may be needed for development of the embryo from

morula to blastocyst. Furthermore, the concentration of valine in uterine fluid was also posi-

tively correlated with increased P4 [122]. The upregulation of small molecule biochemical

pathways was consistent with the observations of [91]. França et al. [123] also demonstrated

endocrine effects on endometrial amino acid metabolism. They compared beef cattle with

high and low pre-ovulatory follicles at Days 4 and 7 of the oestrus cycle and showed that ani-

mals producing higher levels of P4 had upregulated solute transporters, whereas the animals

with lower P4 had lower concentrations of valine and cystathionine in uterine fluid. Trı́bulo

et al. [124] characterized the metabolome of uterine fluid between oestrus and Day 7, demon-

strating that peak intensity for all metabolites in uterine fluid varied over this time, with the

highest concentrations of amino acids at Day 7. The most abundant of these were tryptophan,

tyrosine, leucine, phenylalanine, and aspartic acid. There were also large differences in the

metabolome between Days 0 and 7, with intermediate values seen at Days 3 and 5. These

observations are in agreement with the data in the present study.

In conclusion, this study supported previous work indicating significant hormone-driven

changes in the bovine endometrium, but also demonstrated significant variations over a nar-

row range of time points close to oestrus. In the 48 hours after oestrus these alterations in the

transcriptome assist in preparing the endometrium for an influx of sperm and associated path-

ogens, even in the absence of insemination. We also demonstrate an important role for expres-

sion of genes relevant to innervation in the follicular phase and underline the importance of

lipid metabolism pathways both before and after oestrus. One caveat of our study is that it

examines the overall endometrium and not individual cell types: a future study limited to peri-

oestrus time points would provide more detail if the three main endometrial cell types were

disaggregated and used for single-cell RNA-seq analysis [125].
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12 h post-oestrus, D. 48 h post-oestrus, and E. Day 7 post-oestrus (luteal phase) relative to the

onset of oestrus are shown.

(XLSX)

S4 Table. Full list of IPA diseases and functions categories. IPA disease and functions cate-

gories at A. 12 h post-CIDR, B. 24 h post-CIDR, C. 12 h post-oestrus, D. 48 h post-oestrus, and

E. Day 7 post-oestrus (luteal phase) are shown relative to the onset of oestrus.

(XLSX)

S5 Table. Full list of IPA canonical pathways at all time points relative to oestrus. IPA

canonical pathways at A. 12 h post-CIDR, B. 24 h post-CIDR, C. 12 h post-oestrus, D. 48 h

post-oestrus, and E. Day 7 post-oestrus (luteal phase) are shown relative to the onset of oes-

trus.

(XLSX)

S6 Table. Full list of IPA interaction networks at all time points relative to oestrus. IPA

interaction networks at A. 12 h post-CIDR, B. 24 h post-CIDR, C. 12 h post-oestrus, D. 48 h

post-oestrus, and E. Day 7 post-oestrus (luteal phase) are shown relative to the onset of oes-

trus.

(XLSX)

S7 Table. Full list of IPA upstream regulators at all time points relative to oestrus. IPA

upstream regulators at A. 12 h post-CIDR, B. 24 h post-CIDR, C. 12 h post-oestrus, D. 48 h

post-oestrus, and E. Day 7 post-oestrus (luteal phase) are shown relative to the onset of oestrus.

Regulators with predicted activated state are shaded in orange, those with predicted inhibited

state are shaded in blue, and those with a predicted neutral state are not shaded.

(XLSX)
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