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Abstract

Genomes contain conserved non-coding sequences that perform important biological func-

tions, such as gene regulation. We present a phylogenetic method, PhyloAcc-C, that associ-

ates nucleotide substitution rates with changes in a continuous trait of interest. The method

takes as input a multiple sequence alignment of conserved elements, continuous trait data

observed in extant species, and a background phylogeny and substitution process. Gibbs

sampling is used to assign rate categories (background, conserved, accelerated) to line-

ages and explore whether the assigned rate categories are associated with increases or

decreases in the rate of trait evolution. We test our method using simulations and then illus-

trate its application using mammalian body size and lifespan data previously analyzed with

respect to protein coding genes. Like other studies, we find processes such as tumor sup-

pression, telomere maintenance, and p53 regulation to be related to changes in longevity

and body size. In addition, we also find that skeletal genes, and developmental processes,

such as sprouting angiogenesis, are relevant.

Author summary

Biologists hope to use data from diverse species to identify the genetic basis of continuous

traits such as lifespan or beak shape. To do so, they need methodologies that relate geno-

typic and phenotypic evolution, while taking account of the relationship between species.

The practice of integrating data from many species in this systematic way is relatively

new, and existing approaches to the problem are often ad hoc, focus on protein coding

genes, or involve discretizing continuous measurements. We avoid these limitations and

develop a statistical model and software package that can be used to rapidly analyze align-

ments with respect to a continuous trait. Our method is illustrated by describing 136,859

conserved non-coding elements from 61 mammalian species with respect to the trait

‘long-lived and large-bodied’. We report on the loci highlighted by our model and

describe how our results compare to recent studies taking other methodological
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approaches. We suggest approaches like ours are an important step towards realizing the

potential of data collected from across the animal kingdom, whether the aim is to increase

our understanding of natural history or to better understand human biology.

Introduction

In recent years there have been numerous advances in mapping genes underlying phenotypic

traits. Many of these advances have built on the successes and refinements of traditional

genetic mapping methods yet, as is articulated by Smith et al. [1], such approaches are often

limited to the small number of model organisms amenable to crosses or other genetic manip-

ulations. Recently, alternative phylogenetic approaches driven by comparative genomics

have emerged as a useful tool for mapping genes in species not amenable to traditional

approaches. Several methodologies have been proposed to associate evolution of genes or

genomic regions with changes in phenotypic traits including those of [2–7]. These studies

use a variety of genomic signatures as evidence of association with phenotypic evolution,

including increases in evolutionary rate, loss of function such as pseudogenization, or whole-

sale deletion of genes or non-coding regions from the genome. Comparative approaches of

this kind (hereafter ‘PhyloG2P’) have proved to be surprisingly powerful at identifying asso-

ciations between genomic and phenotypic variation in the context of convergent evolution

of the phenotypic trait.

With the PhyloG2P research programme in mind, this paper aims to make three contribu-

tions. First, we highlight the idea of relating phenotypic and genotypic evolution by linking

substitution rate multipliers (for nucleotide changes) to variance multipliers (for changes in a

continuous trait). Second, we introduce a specific piece of software, PhyloAcc-C, that applies

this approach in the context of conserved non-coding elements (CNEs). Third, we illustrate

the PhyloAcc-C software using real data, running it with a set of mammalian CNEs and a life-

span related trait as input, thereby providing an opportunity to discuss its output in the context

of other recent PhyloG2P-style studies.

The overarching biological motivation for our study is our interest in evolutionary innova-

tion, and here we are particularly concerned with methods attempting to answer the question

‘which CNEs are related to changes in a continuous trait I care about?’ This is an important

question because it has been recognized for decades that there are many highly conserved

stretches of non-coding DNA that participate in gene regulation across diverse species [8].

Indeed, such sequences are routinely annotated [9] in the UCSC Genome Browser [10] and

may then be related to the evolution of phenotypic traits. To give one example, Booker et al.

[11] identified conserved sequences that were accelerated specifically in bats, and showed that

a subset acted as limb enhancers in transgenic mice. Their conclusion was that some identified

enhancers were potentially instrumental to the evolution of bat wings. This conclusion was

reached without modelling the co-variation of the rate of enhancer evolution and key measure-

ments from bat wings. However, it is possible that incorporating measurements such as limb

length could highlight additional relevant loci that had experienced more subtle evolutionary

trajectories than bat specific acceleration.

More generally, as reviewed by Smith et al. [1], there is widespread interest in relating phe-

notypic and molecular evolution. This interest is evidenced by the substantial effort put into

producing a variety of software packages and studies that quantify the relationship between

traits and substitution rates. Examples include Forward Genomics [4] and reverse genomics

[3], both of which relate sequence similarity (via correlation, generalized least-squares, or

PLOS COMPUTATIONAL BIOLOGY Phylogenetic modelling of DNA substitution rates and continuous trait evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011995 April 24, 2024 2 / 18

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1011995


heuristics) to traits (with ancestral values inferred using parsimony algorithms). A methodol-

ogy with a similar goal is that of Treaster et al. [7], which uses tree topology to model the intui-

tive notion that comparisons between more closely related species should be less confounded

by genetic background than comparisons between more distantly related ones. A recent con-

tribution to this diverse collection of approaches is PhyloAcc [12], a Bayesian phylogenetic

approach centred on latent conservation states, which is modified here in this paper. A key fea-

ture of the above four approaches is that they deal with discrete traits, and in the case of Phy-

loAcc, do not explicitly model the trait, instead relying on a priori reconstruction, often under

the assumption of convergent gain or loss of a character state.

Methods for studying the relationship between continuous traits and molecular evolution

are fewer. Coevol [13] models the co-evolution of continuous traits and rates using a multivari-

ate diffusion process, and does not require user supplied branch lengths, although calibrations

can be supplied if desired. One imagines that constraining branching times will sometimes be

helpful, especially when the sequences being considered are short and highly conserved, and

therefore contain few distinguishing differences, as is the case with mammalian CNEs. Two

more empirically focused recent studies are that of Yusuf et al. [14], who study the co-evolu-

tion of bill shape and both protein coding and non-coding DNA, and that of Kowalczyk et al.

[15], who study the lifespan and body size of mammals. The former study used k-means bin-

ning to group branches of a tree based on the rate of trait evolution, and then used a likelihood

ratio test to compare nucleotide substitution rates under a global clock model versus a local

clock model, with one rate per bin. The latter study used the RERConverge method [6], which

correlates relative rates of protein evolution and ancestral state reconstructions of a continuous

trait, each estimated separately using maximum likelihood.

Here we describe the PhyloAcc-C model, which connects the evolution of continuous traits

and non-coding DNA using a statistically integrated approach. We then illustrate the use of

our model by applying it to a mammalian trait previously analyzed using RERConverge, but

this time considering CNEs rather than protein coding genes, thereby providing analyses that

complement the existing literature.

Methods

The PhyloAcc-C method follows the general Bayesian approach taken by Hu et al. [12] and

modifies it so as to model continuous phenotypic change. In this section, we describe the

method in enough detail that it may be recreated, and so that one may understand or modify

our open source R/C++ implementation.

Input

The method relies on four inputs: (1) a rooted phylogeny T having L leaves, N = 2L − 1 nodes,

and E = N − 1 edges, and that encapsulates the relationships between species from which trait

data is drawn; (2) a multiple sequence alignment of homologous CNE sequences from L spe-

cies (rows) at S sites (columns) and which makes up the top L rows of matrix XN×S, which will

also model ancestral nucleotides; (3) a vector of continuous trait measurements observed in

the corresponding L species and which makes up the first L elements of vector y = (y1, . . ., yN),

which will also model ancestral trait values; (4) a rate matrix Q4×4 and stationary distribution π
that models the background nucleotide substitution process at putatively neutral sites. The

alignment may contain gaps which will be treated as missing data. Both the alignment and the

nucleotide substitution parameters can be obtained using standard methods as detailed by Hu

et al. [12]. In particular, the rate matrix Q is often estimated using methods like PhyloP [16]
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from an alignment of putatively neutral and easily alignable sites, such as fourfold degenerate

sites of protein coding loci.

Model

Each branch is assigned a conservation state zi that takes on three values: background (zi = 1),

conserved (zi = 2), or accelerated (zi = 3). This categorization of branches into three states fol-

lows that of Hu et al. [12], which in turn was based on the approach taken by Pollard et al.

[16], who apply a conserved and an accelerated state to branches of a tree in the PhyloP soft-

ware. Conservation states are not assigned freely but follow a Markov process (see e.g. textbook

[17]) from root to tips so that the probability of a transition on a branch from parent i to child

j is PrðzjjziÞ ¼ Φzi ;zj
, the (zi, zj)th element of matrix

Φ ¼

1 � c c 0

0 1 � a a

0 b 1 � b

2

6
6
6
4

3

7
7
7
5

ð1Þ

with (a, b, c) 2 (0, 1)3.

The structure of this matrix allows CNEs to become conserved and later accelerated.

Because a transition from accelerated back to conserved is also possible (i.e., b> 0), bursts of

acceleration can occur on internal branches. In principle, other matrices can be used to either

constrain or relax the transition between rate categories across the tree.

The conservation state of a branch affects both the nucleotide substitution process and the

rate at which a trait evolves. Conservation states modulate nucleotide substitution rates via

substitution rate multipliers r = (r1 = 1, r2, r3) so that the probability of transition from nucleo-

tide a to b on branch i of length ti is expmfQ � rzi
� tiga;b. Similarly, conservation states on

branches modulate the magnitude of trait changes along branches via variance multipliers

v = (σ2, β2σ2, β3σ2). Under the model, traits evolve according to normally distributed

displacements along the branches of T such that cumulative displacements are observed in y1,

. . ., yL. Displacements have mean 0 and a variance that is proportional to both the branch

length tj and the appropriate variance multiplier so that yj j zj � Normalðyi; tjvzj
Þ and

vzj
¼

s2 if zj ¼ 1; i:e:; background;

b2s
2 if zj ¼ 2; i:e:; conserved;

b3s
2 if zj ¼ 3; i:e:; accelerated:

8
>>><

>>>:

ð2Þ

Joint distribution

Letting pa(i) denote the parent of node i, and assuming that pa(j) = pa(k) = i, we can write the

joint distribution of all quantities under our model as:

PðX; y; z; r; v;ΦÞ ¼
YS

s¼1

YE

j¼1

PðXj;sjr; z;Xi;sÞ
YE

j¼1

Pðyjjv; z; yiÞ
YE

j¼1

PðzjjΦ; ziÞ

�

"
YS

s¼1

pXR;s

#

PðyRÞPðzRÞPðrÞ PðvÞPðΦÞ:

ð3Þ
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The last line of the above product indicates that at the root node R the prior probability of

observing a nucleotide is given by the (input) stationary distribution π, whereas the trait and

conservation state are specified directly using a prior, as described below.

Specification of priors

At the root node, we use Pr(zR = 1) = Pr(zR = 2) = 0.5. We follow Hu et al. [12] in this choice

because we analyze the same CNE sequences, which were originally identified because they

appeared widely conserved under a model (phastCons [9]) with two rate categories, conserved

and neutral. We use yR * Normal(0, 1), although users can make their own choices freely. Pri-

ors on a, b, c in matrix Φ are uniform distributions (i.e., Beta(1,1)). Because we use the same

nucleotide data, r2 * Gamma(5, 0.04) and r3 * Gamma(10, 0.2) follow the values in Hu et al.

[12]. Priors on log β2 and log β3 are Normal(0, 1) which is mathematically equivalent to setting

a Normal(0, 2) on log(β3/β2), the logarithm of their ratio. We also assume that log σ2 *Nor-

mal(0, 2) a priori.

Bayesian inference procedure

Inference is performed using a Markov chain Monte Carlo procedure, which is a combination

of collapsed Gibbs sampling with some Metropolis within Gibbs steps [18, 19]. The procedure

is a minor modification of that introduced in pages 5–8 of the SI of Hu et al. [12], with the

addition of an extra Metropolis step (Step 1), and the introduction of emission probabilities

for y when sampling z (Step 3). The following steps are repeated:

Step 1: Sample ancestral trait values y and trait variance multipliers v. Perform

Metropolis steps (default is 500) to propose and update σ2, β2, β3, and latent y. On 60% of itera-

tions proposals to modify σ2, β2, and β3 are made; on the remaining occasions proposals to per-

turb latent yL+1, . . ., yN are made.

Step 2: Sample ancestral nucleotides X. First use the familiar pruning algorithm [20] to

calculate the likelihood of subalignment {Xi,s} rooted at node i for all sites s = 1. . .S using the

recurrence:

PðfXi;sg j Xi;s; z; rÞ ¼
X

Xj;s

PðXi;s ! Xj;sjrzj
ÞPðfXj;sgjXj;s; z; rÞ

�
X

Xk;s

PðXi;s ! Xk;sjrzk
ÞPðfXk;sgjXk;s; z; rÞ:

ð4Þ

Next, forward sample ancestral nucleotides XL+1. . .N,1. . .S. For sites at the root node we have

P(XR,s|{XR,s}, z, r)/ P({XR,s}|XR,s, z, r)P(XR,s) and PðXR;sÞ ¼ pXR;s
by assumption. For the

remaining internal nodes we work from root to tips on a per-site basis using:

PðXj;sjXi;s; z; rÞ / PðfXj;sgjXj;s; z; rÞPðXi;s ! Xj;sjrzj
Þ: ð5Þ

Step 3: Sample per-branch latent conservation states z. First, from tips to root, calculate

the joint likelihood of trait values and nucleotide emissions {XYi} occurring on the subtree
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rooted at node i using the recurrence:

PðfXYigjXpaðiÞ;1���S; ypaðiÞ; zi; r; v;ΦÞ ¼
YS

s¼1

PðXpaðiÞ;s ! Xi;sjrzi
Þ

¼
YS

s¼1

PðXpaðiÞ;s ! Xi;sjrzi
Þ

� PðypaðiÞ ! yijvzi
Þ

�
X

zj

Pðzi ! zjjΦÞPðfXYjgjXi;1...S; yi; zj; r; v;ΦÞ

�
X

zk

Pðzi ! zkjΦÞPðfXYkgjXi;1...S; yi; zk; r; v;ΦÞ:

ð6Þ

Next, sample z from root to tips. At the root our (domain specific) prior is P(zR) = (0.5, 0.5,

0.0). For descendant nodes the appropriate probabilities are:

PðzjjX; y; zi; r; v;ΦÞ / PðfXYjgjXi;1...S; yi; zj; r; v;ΦÞPðzi ! zjjΦÞ: ð7Þ

Step 4: Sample per-category nucleotide substitution rate multipliers r. Perform

Metropolis step to propose/update substitution rate multipliers r2 and r3.

Step 5: Sample latent rate category transition probabilities Φ. The beta prior on entries

a, b and c of Φ leads to a beta posterior. For example, the posterior of c is directly sampled

based on z transitions from 1! 2 as follows:

c � Beta

 

ca þ
XE

j

Iðzi ¼ 1; zj ¼ 2Þ; cb þ
XE

j

Iðzi ¼ 1; zj ¼ 1Þ

!

ð8Þ

The posteriors of a and b are calculated similarly using the count of transitions 2! 3 and

3! 2 respectively.

Model selection and ranking of associated loci

A collection of candidate elements can be ranked for association with a trait of interest using

the Bayes factor (BF) [21] in favour of the ‘full model’ described above. In the full model, σ2,

β2, and β3 are free to vary whereas in the more restricted null model this is not the case, and

β2 = β3 = 1 so that no systematic relationship between the rate of trait evolution and relative

substitution rates is specified. As the null model is nested and the priors on β2 and β3 are com-

mon to all candidate elements, the BF is estimated using the posterior density of (log β2, log β3)

at (0, 0). This is an application of the Savage–Dickey method, which is explained in the tutorial

of Wagenmakers et al. [22].

Molecular data

We obtained mammalian CNE alignments directly from the first author of [12], who had in

turn originally obtained them from the UCSC 100-way vertebrate alignment [23] available at:

http://hgdownload.soe.ucsc.edu/goldenPath/hg38/multiz100way. We obtained the rate matrix

and mammal phylogeny (see S1 Text) used to model the background relationship between spe-

cies from the PhyloAcc GitHub repository, prepared by Hu et al. [12], and available at: https://

github.com/phyloacc/Hu-etal-2019-data/. The mammal phylogeny was originally prepared by

Murphy et al. [24].
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Software implementation

The PhyloAcc-C software is implemented as an R package [25] that makes use of C++ func-

tions [26, 27] to perform MCMC sampling. To use the package one must load an alignment

(e.g. a FASTA file) and a tree (e.g. a New Hampshire file) by using the package ape [28] or sim-

ilar. Trait data should be loaded into an R data frame and labelled so that it can be matched to

the species names in the tree.

The PhyloAcc-C package includes helper functions (sim_X, sim_y, and sim_z) enabling

one to simulate alignments, traits, and conservation states under the PhyloAcc-C model. We

used these functions to assess model performance in this paper, and a user may do the same

given their own phylogeny and rate matrix.

The software, installation instructions, and a tutorial covering simulation and inference are

all available at https://github.com/phyloacc/PhyloAcc-C.

Results

To demonstrate that it is possible in principle to relate the rate of trait evolution to the rate of

nucleotide evolution using PhyloAcc-C, we performed a simulation study under ideal circum-

stances. Then, to illustrate the method using real data, we downloaded principal component

data representing the trait ‘long-lived large-bodied’ (LLL) previously studied with respect to

protein evolution by Kowalczyk et al. [15]. This trait was analyzed in relation to CNEs previ-

ously studied by Hu et al. [12].

In both simulations and our illustrative example, we focused on the quantity log(β3/β2).

This quantity contrasts variation of a trait on branches undergoing accelerated sequence evolu-

tion against variation on branches undergoing conserved sequence evolution; a positive quan-

tity associates faster nucleotide evolution with faster trait change whereas a negative quantity

associates faster nucleotide evolution with slower trait evolution. Values close to zero suggest

no strong systematic relationship under the PhyloAcc-C model.

Note that the state of a trait on roughly half of all nodes of a tree is unobserved, so it is diffi-

cult to make inferences about β2 or β3 separately. This is because, in general, a path through a

tree can involve sequential switching between periods of hidden evolution under either the β2

or the β3 regime. For this reason, we focus on the ratio of the two parameters, for which we

can do inference. The logarithm of the ratio is reported because we are interested in the multi-

plicative effects of the parameter pair, e.g., variance multiplier pair (0.2/0.4) should be thought

of in the same way as pair (0.6/1.2) as in both cases the second multiplier is double the first.

Simulations on full binary trees

Using a fully bifurcating ultrametric tree with 128 tips, we simulated 100 times from our prior

distribution, generating latent conservation states, and corresponding DNA sequence align-

ments and phenotypic trait values. The length of the simulated elements was 80 bp, reflecting

the median length of mammalian CNEs in our data set. Branch lengths were all set at 0.1, so

that root to tip distances were similar to the longer of the root to tip distances on our mamma-

lian tree.

We were able to recover log(β3/β2) reasonably well, with an MSE (mean squared error) of

0.36 (Fig 1A). The estimates appeared reasonably calibrated: the 80% credible interval (the 10th

to 90th percentiles) covered the simulated parameters 72% of the time. FPRs (false positive

rates) were characterized by fixing β2 = β3 = 1 (no link between trait variation and molecular

evolution) and simulating 200 times under two scenarios. In the first scenario (Table 1, col. 2)

elements were generated under an exclusively neutral process, in the second scenario (Table 1,

col. 5) completely conserved elements were generated. In the latter conserved scenario r = 0.2
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Fig 1. Simulated versus recovered (median) log(β3/β2) under model using 80 bp alignments. A. fully bifurcating ultrametric tree

with 128 tips and all branch lengths set to 0.1; B. branch lengths are doubled to 0.2; C. tip count is doubled with respect to A, but

branch lengths are reduced to 0.09 to keep root to tip distance similar; D. branch lengths and topology as per mammalian tree (see S1

Text).

https://doi.org/10.1371/journal.pcbi.1011995.g001

Table 1. FPR when choosing the full model using the BF in favour as a cut-off.

BF cut-off neutral 128 tips neutral 128 tips long branch neutral 256 tips conserved 128 tips conserved 128 tips long branch conserved 256 tips

1 100.0% 99.5% 100.0% 100.0% 97.5% 98.5%

2 0.0% 0.0% 0.5% 0.0% 0.0% 1.0%

3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

FPRs were estimated using 200 simulations for each of six scenarios. The tree variants were: 128 tips, branch length 0.1; 128 tips, branch length 0.2; 256 tips, branch

length 0.09. The alignment variants used rate multiplier 1 (neutral) and 0.2 (conserved).

https://doi.org/10.1371/journal.pcbi.1011995.t001
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was used, the expected value of r2 under our prior. The FPR dropped below 1% in the neutral

scenario when a BF of 2 or more was used as a cut-off; under the conserved scenario the corre-

sponding cut-off was also BF� 2.

We doubled the branch lengths on the bifurcating tree described above to 0.2 and then per-

formed simulations analogous to those described above. We found we were no better able to

recover log(β3/β2), now seeing an MSE of 0.38 (Fig 1B). The model remained reasonably cali-

brated as the 80% credible interval (the 10th to 90th percentiles) covered the simulated param-

eters 74% of the time. FPRs dropped to less than 1% by using BF cut-offs�2 in both scenarios

(Table 1, cols. 3 and 6).

In the last of our idealized scenarios we doubled the number of tips on the tree to 256 while

reducing the branch lengths to 0.09. In this scenario, the recovery of log(β3/β2) improved, hav-

ing an MSE of 0.21 (Fig 1C). The 80% credible interval covered the simulated parameters 85%

of the time and BF cut-offs of 3 or more were sufficient to reduce the FPR to less than 1%

(Table 1, cols. 4 and 7).

Simulations on a mammalian tree

Ultimately only performance on real phylogenies with real traits matters. In a manner similar

to the above simulations, we took our mammalian tree, having 61 tips, a variety of branch

lengths, and an unbalanced topology, and simulated from our prior distributions as before.

Recovery of log(β3/β2) worked less well, with an MSE of 0.45 (Fig 1D), though the model char-

acterized its uncertainty appropriately as the 80% credible interval (10th to 90th percentiles)

covered the simulated parameters 79% of the time.

When testing FPR, we considered scenarios relevant to our size and lifespan results

(below). Therefore, we fixed the values of the trait to the real LLL trait values of Kowalczyk

et al. [15] i.e. we simulated only conservation states and alignments. Three scenarios were

devised: one in which all elements evolved neutrally, one in which elements were conserved at

the expected level of r = 0.2, and one in which the elements were conserved at r = 0.5, which

put them above the 99th percentile according to our prior. When simulating short elements

(50 bp) against the LLL trait we needed BF cut-offs of 7 (neutral), 3 (conserved), and 8 (barely

conserved) in order to reduce the FPR below 1% (Table 2, cols. 2–4); when considering longer

elements (180 bp) the relevant BF thresholds were 4, 4, and 7 (Table 2, cols. 4–7). We remark

that the barely conserved scenario (r = 0.5) presents a challenging set of parameters for the

model, which does not mix well when r2 and r3 are conflated.

Table 2. FPR on the mammalian tree (see S1 Text) when choosing the full model using the BF in favour as a cut-off.

BF cut-off neutral 50 bp conserved 50 bp barely conserved 50 bp neutral 180 bp conserved 180 bp barely conserved 180 bp

1 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

2 19.5% 1.5% 65.0% 1.5% 2.5% 37.5%

3 2.0% 0.0% 10.5% 0.5% 1.5% 5.5%

4 1.5% 0.0% 2.5% 0.0% 0.0% 2.0%

5 1.0% 0.0% 0.5% 0.0% 0.0% 1.0%

6 0.5% 0.0% 0.5% 0.0% 0.0% 0.5%

7 0.0% 0.0% 0.5% 0.0% 0.0% 0.0%

8 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

FPRs were estimated using 200 simulations for each of six scenarios. The rate multiplier variants used to generate the alignments were: 1 (neutral); 0.2 (conserved); 0.5

(barely conserved). The alignment length variants were 50 bp and 180 bp. The trait was not simulated but fixed to the LLL values (see Fig 2 or S1 Data).

https://doi.org/10.1371/journal.pcbi.1011995.t002
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Size and lifespan of mammals

Rather than pre-filtering CNE alignments based on heuristics, we instead ran PhyloAcc-C on

all alignments with the LLL trait as input and then considered those where the model fit well

in a reasonable 10,000 iterations, as assessed via a Gelman and Rubin [29] convergence diag-

nostic of< 1.01 across 3 chains. This resulted in summaries for 136,859 elements. We ranked

the elements by the BF (Bayes factor) in favour of the full model, where the rate of trait evolu-

tion is allowed to co-vary with the rate of molecular evolution, versus the null model, where

the rate of trait evolution is constant across the phylogeny. We found 30 elements (0.02% of

total) where the full model was ‘overwhelmingly’ supported (BF� 100) with respect to the

LLL trait and 1,109 (0.81% of total) where the full model was ‘very strongly’ supported (BF

�30). We note that a BF� 30 generally corresponded to effect sizes of magnitude 2 or more

on the log scale i.e. to a ratio of about 7× or more.

The result of running PhyloAcc-C on the element with the highest BF is shown in Fig 2.

The ancestral reconstruction of the LLL trait with respect to this element is shown in Fig A in

S1 Text. To determine if there were biologically interesting patterns that could be systemati-

cally detected based on CNE location, we submitted the 1,109 loci of interest as genomic fore-

ground to a GREAT analysis [30]; the GREAT tool annotates regions of non-coding DNA

with biologically meaningful terms using nearby genes, but includes statistical corrections that

make it a more principled alternative to an analysis based solely on the gene closest to a given

CNE. The full set of 136,859 CNEs (not the whole genome) were used as genomic background

for the analysis.

The GREAT analysis suggested no genes were associated with the 1,109 LLL loci of interest,

although several GO (gene ontology) biological processes were. These can be summarized as:

blood vessel endothelial cell proliferation involved in sprouting angiogenesis; positive regula-

tion of branching involved in lung morphogenesis; regulation of muscle tissue development,

differentiation, and proliferation, esp. in the heart; regulation of alkaline phosphatase activity;

astrocyte development; organ induction; endocrine pancreas development; trachea formation.

In addition to performing an analysis using GREAT, we also examined the 1 Mbp regions

surrounding the top 25 loci associated (via PhyloAcc-C) with the LLL trait using the UCSC

[10] and ENSEMBL [31] genome browsers, noting known functions or other annotations of

nearby genes. Unlike the GREAT analysis, this was not a statistical analysis, but a set of obser-

vations made using the GeneCards tool [32], and linked databases, such as the GWAS Catalog

[33]. We found that 12 loci were near genes associated with height, weight, or limb length in

some way, mainly via GWAS. Seven loci were associated with cancer genes, seven with the

brain or nervous system, six with the skeleton, four with sperm, and one with longevity. Three

regions had little to no annotation available whereas four loci were associated with p53, cell

fate, or telomere length.

Overall, LLL loci with BF� 30 exhibited effects in both directions, with log(β3/β2) being

both positive and negative (Fig 3). The results of our note taking approach, and summaries of

the PhyloAcc-C runs on the 136,859 LLL loci are recorded in S1 Data. Full output of the

GREAT analysis is reported in S2 Data.

Discussion

We present a statistical method, PhyloAcc-C, for relating the rate of nucleotide evolution to

the rate of evolution of a continuous trait. The model is phylogenetically framed and operates

under the common assumption that nucleotide evolution follows a site-independent, continu-

ous-time discrete-state Markov process, and that continuous traits evolve under Brownian

motion, although in our case with potentially different rates on different parts of the tree.
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Latent rate categories are also assigned to each branch using a Markov process, which all

together allows the rates of molecular and phenotypic evolution to vary in an automatic way

across branches.

A notable feature of the model is its ability to associate the evolution of continuous traits

and non-coding DNA using a more statistically integrated approach than that taken by Yusuf

et al. [14] or Kowalczyk et al. [15]. Indeed, the general idea of linking genotypic rate multipliers

(i.e. evolution relative to a known background tree) and phenotypic rate multipliers (i.e. vari-

ance parameters) seems natural, and could be used in other frameworks. For example, the Phy-

loAcc family of models (https://phyloacc.github.io/) allocates rates with efficient processing of

CNEs in mind, yet genotypic and phenotypic rates of evolution can also be linked under more

Fig 2. PhyloAcc-C fit to the LLL loci with the highest BF in favour of the full model (VCE277691). A. the mammalian phylogeny (input data, see S1 Text) is scaled

according to the posterior distribution of rate multipliers r and coloured by the posterior distribution of conservation state z (black = neutral, blue = conserved,

red = accelerated). Next to the tree the LLL trait and CNE alignment (both are also input data) are shown. The corresponding posterior distribution of the trait (i.e. an

ancestral reconstruction) is shown in Fig A in S1 Text. B. the prior (dashed) and posterior (solid) distribution of the rate multipliers r2 (blue, conserved) and r3 (red,

accelerated). C. the prior (dashed) and posterior (solid) distribution of log(β3/β2). In this case the posterior distribution suggests a positive value so that faster nucleotide

evolution is associated with faster trait evolution, but see S1 Text for VCE351367 where the opposite is true. D. posterior distribution of trait change from tip to

immediate ancestor, normalized by branch length and coloured by posterior conservation state. Again note that an accelerated conservation state (red) is associated with

bigger trait moves and a conserved conservation state (blue) is associated with smaller ones.

https://doi.org/10.1371/journal.pcbi.1011995.g002

PLOS COMPUTATIONAL BIOLOGY Phylogenetic modelling of DNA substitution rates and continuous trait evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011995 April 24, 2024 11 / 18

https://phyloacc.github.io/
https://doi.org/10.1371/journal.pcbi.1011995.g002
https://doi.org/10.1371/journal.pcbi.1011995


complex models, such as relaxed clocks [34, 35] or local clocks [36], via linear or logistic func-

tions. The efficiency versus accuracy tradeoffs of different rate assignment strategies will not

be clear without further research, e.g., allowing substitution rates to change within a branch

might be more computationally demanding, but is biologically more realistic and might lead

to better model fit, especially because PhyloAcc-C does not take any account of branch length

when considering the probability of transition between rate categories.

PhyloAcc-C focuses on linking the rate of genotypic evolution with the rate of phenotypic

evolution. This is distinct from: (i) relating the state of a sequence to the state of a trait; (ii)

relating rapid sequence change to the state of a trait; (iii) relating the state of a sequence to

Fig 3. BF versus estimated (median) log(β3/β2) for 136,859 mammalian LLL loci. Orange loci are those having BF� 30 and that were submitted as GREAT

foreground during analysis. The two loci with the highest BF in favour of the full model are labelled. Note VCE277691 (see Fig 2) and VCE351367 (see S1

Text) have effects with opposite signs.

https://doi.org/10.1371/journal.pcbi.1011995.g003
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rapid trait change. Many methods perform analyses related to approach (i), and have been well

summarized [1]. Approach (ii) is the domain of Coevol [13] (where fast evolution across 410

mammalian cytochrome b sequences was associated with lower mass and longevity), as well as

some more heuristic approaches [14, 15]. In some sense approach (iii) is taken by e.g. reverse

genomics [3] and PhyloAcc [12], which both treat sequences in an alignment that are suffi-

ciently different (a threshold) as lost. If one squints hard enough, the coincident loss of a trait

can then be considered a rapid change in a trait. However, the aforementioned approaches do

not actually model the rate of change of a trait on the lineages where it is lost, so approach (iii)

is certainly a potential area for future work.

Simulations show that the model can perform acceptably on both ideal trees and a mamma-

lian tree related to a large set of CNE alignments. This is encouraging, but we suggest users of

the method check model performance using their tree, and the sequence lengths and rate mul-

tipliers they expect to see. The R software package and instructions accompanying this paper

make the simulation process relatively straightforward. In addition, we emphasize that whereas

larger trees might provide more data points, there is a judgment call to be made over how

large a tree can be plausibly described by three rate categories.

As an illustrative example, we applied PhyloAcc-C to CNEs and longevity data from mam-

mals. From a biomedical perspective, longevity is an important trait, with a long history of

study in a diversity of organisms, from worms [37] to humans [38], and therefore there is at

least some possibility of assessing the plausibility of candidate loci using published evidence

and annotations. Furthermore, lifespan and body-size are also relevant to longstanding conun-

drums and current ecological debates, including theories of life-history tradeoffs [39, 40], and

Peto’s paradox [41], which asks how large and long-lived animals mitigate cancer risk in the

face of the many cell divisions that occur during their lifetime. This means the trait is also

familiar and of interest to a broad readership. For these reasons, we describe three recent

papers studying lifespan that also use broad genomic data, and help put our analysis and meth-

odology into context.

Kowalczyk et al. [15] studied the LLL trait (as previously mentioned, we reuse their trait

data) but in the context of protein evolution, with an explicit focus on genes that were inter-

preted as being under increased purifying selection in long-lived large-bodied species, where

LLL was treated as the derived state. Kowalczyk et al. [15] highlighted processes related to the

cell cycle, DNA repair, cell death, immunity, and IGF1 expression pathways. Each of these pro-

cesses were then plausibly linked to lifespan via their analysis. The authors also discuss telo-

mere maintenance and p53, also plausibly linked to aging and cancer control. There is notable

overlap between our LLL results and those of [15]: both analyses found associations to p53,

telomere maintenance, and cell fate within 1 Mbp of our top 25 loci of interest. Our top 25 loci

also have links to cancer and height or body size, though these prevalent diseases and biomark-

ers are of course heavily studied and consequently commonly annotated, and so we cannot

know whether their appearance is simply due to their frequency.

Tejada-Martinez et al. [42] also focused on protein evolution in their study of lifespan and

body mass in primates, although they then linked their findings to enhancer evolution. They

performed phylogenetic regressions, relating dN/dS to maximum lifespan and body mass for

around 10,000 genes. In contrast to Kowalczyk et al. [15], Tejada-Martinez et al. [42] focus on

positive (directional) selection on protein-coding genes rather than conservation. The authors

identified 276 candidate genes whose rate of adaptive evolution positively correlated with max-

imum life span in a phylogenetic context. The authors focused their discussion on the enrich-

ment of diverse processes including immunity, inflammation, cellular aging, organismal

development (height, BMI), neurodevelopment, and brain function. These processes are all

represented in our results in one form or another. None of the genes mentioned in the body of
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their manuscript occur in our notes on our top 25 loci of interest except for p53, the well

known tumour suppressor, which is downregulated by HDAC3, a gene close to the CNE

ranked as most-interesting overall in our LLL analysis (Fig 2).

A third study by Treaster et al. [43] takes yet a different approach to understanding longev-

ity. By focusing on 23 species of rockfish that are both closely related and feature a wide range

of lifespans (11 to more than 200 years), the authors aimed to identify longevity related protein

coding genes while minimizing false positives due to (other) convergent evolution. A key part

of the analysis pipeline was the detection of rate shifts using the TRACCER tool [7]. Unlike

Kolora et al. [44], and the other studies we mention, Treaster et al. [43] treated longevity as a

binary trait and argued against the need to correct for body size. The authors found the ances-

tral rockfish state to be long-lived, and linked positive selection to glycogen biosynthesis and

flavonoid metabolism via GO analysis. The top genes identified in their study do not feature in

our notes on our top 25 LLL loci though, as all of us do, the authors find a relationship between

their loci of interest and p53, in this case via PLA2R1. We note Treaster et al. [43] and Kowalc-

zyk et al. [15] emphasize insulin signalling pathways, though apparently the particular path-

ways are under increased constraint in mammals (gene IGF1) but accelerated in Rockfish

(gene INSR).

The above studies either focus exclusively on protein coding genes [15, 43] or examine

non-coding sequences only insofar as they are identified as byproduct of an analysis with

genes as the starting point and main consideration [42]. One distinguishing factor of Phy-

loAcc-C when compared to these approaches is that its focus is on identifying relevant non-

coding sequences. It is possible then that PhyloAcc-C will sometimes identify processes that

would otherwise be missed. Indeed, Treaster et al. [43] specifically mention that an attempt

was made to analyze the CNE data captured as part of their study, but that their approach was

underpowered when working with short conserved sequences. This suggests PhyloAcc-C

might be used in a complementary manner to existing methodologies, potentially extracting

further insight from a given sequencing data set. Bearing this in mind, it is interesting that our

analysis appeared to highlight alternative biological themes that are not present in the results

of the above studies, but that do seem plausibly related to longevity and body size. These

themes are a prevalence of associations with skeletal genes and genes relating to exploratory

process.

When examining our top 25 LLL loci we noticed several genes related to bone strength or

bone development including Fibrillin 2 (FBN2). We note that FBN2 is specifically associated

with congenital contractural arachnodactyly, i.e., a particularly tall long-limbed phenotype,

with long slender fingers and toes. Such non-lethal but body size-related phenotypic differ-

ences do seem to be the kind of effects that one would a priori imagine to be associated with

true LLL loci. In the case of exploratory processes, we note that our GO analysis identified the

processes ‘blood vessel endothelial cell proliferation involved in sprouting angiogenesis’ and

‘positive regulation of branching involved in lung morphogenesis’. These sort of developmen-

tal processes are exactly those thought to enhance evolvability [45, 46]. The basic reasoning is

that whereas core functions are conserved across metazoa, the evolutionary flexibility of ana-

tomical traits, such as limb shape or size, is derived from the fact that many of their constituent

components are decoupled from a few fixed genetically coded features. For example, the limb

is a co-ordinated collection of bone, muscle, nerves, and vasculature, but the genetic orchestra-

tion of limb development is largely achieved through cartilaginous condensations, which then

select feasible arrangements of the aforementioned components. However, what works for the

body during development can work against it in the case of cancer, and the importance of

blood supply to tumour growth and metastasis means that as of 2018 at least 14 endothelial

angiogenesis inhibitors were being used to treat cancer in the USA [47].
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In conclusion, we have introduced a method that can be used to study the co-evolution of

continuous traits and non-coding DNA. The method is available as an R package and users are

free to modify it as they wish under the GPL. Applying the method highlighted interesting can-

didate LLL loci, including those related to exploratory processes, skeletal development, as well

as more ‘typical’ lifespan related themes that have also been identified in other recent bioinfor-

matics studies.

We have given some thought to future work. Longevity and size are clearly complex traits

that are correlated with each other, and also with other traits, e.g., sociality [48]. Moreover, it is

not unreasonable to think that thousands of enhancers and (at least) hundreds of genes are sys-

tematically involved in the evolution of these correlated related traits. PhyloAcc-C currently

cannot tease apart the relative contribution of different loci to different traits of interest. One

future direction would be to focus on methods for finding clusters of loci that collectively, but

not always simultaneously, contribute to the variation of a trait. Another area for future work

is the incorporation of more flexible null models. One way this should be attempted is by

using a more realistic method to assign nucleotide rate multipliers to branches, such as relaxed,

correlated, or random local clocks, or their more recent derivatives [49]. A second improve-

ment would be to make use of alternative models of trait evolution such as those used by

Uyeda and Harmon [50]. A combination of more flexible rate assignment and alternative

models of trait evolution would lead to a more plausible null model overall, giving a greater

confidence that a high BF indicates an interesting locus.

We see PhyloAcc-C and the other PhyloG2P methods we have discussed as first steps

towards powerful tools to advance the PhyloG2P programme. Such methods will ultimately

increase both our understanding of natural history and also allow us to use data from diverse

species to shine a spotlight on parts of our own genome that are important for biodiversity and

human health. Smith et al. [1] put it well: ‘Phylogenetics is the new genetics’.
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