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ABSTRACT 
 

Artificial intelligence (AI) has gained much popularity in various sectors and has found applications 
in multiple areas, including occupational health and safety (OHS) risk management of the high-risk 
construction, mining, and oil and gas sectors. OHS risk management centers on identifying, 
assessing and controlling occupational risks systematically to prevent work-related injuries, 
illnesses and deaths. This review presents the advances in AI applications for OHS risk 
management in these sectors and synthesizes their barriers for better application prospects. In the 
construction sector, AI can be employed in building information modeling during the design stage to 
identify and deal with the hazards of building models. AI can be deployed in construction sites 
through computer vision, sensor networks, knowledge-based systems, and machine learning to 
capture real-time site conditions, analyze the videos or pictures captured, and provide feedback to 
workers for appropriate responses. A similar setup involving the same components is also used for 
managing the OHS risks of surface or underground mining, particularly for monitoring the 
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environmental conditions, detecting the presence of hazardous gases, and identifying hazards in 
locations that are remote and difficult to assess. Sensors can be attached to personal protective 
equipment and watches and the signals transmitted via Bluetooth to permit data collection for 
analysis and response by AI. In the oil and gas sector, sensors are extensively used to collect 
process safety data from wells, pipelines, valves, etc. for analytical and predictive Al. Al, especially, 
machine learning is used to create personalized training for workers based on their learning pace 
and characteristics. However, the major barriers identified are high cost, lack of support and skilled 
employees, ethical issues, and the uncertainty of AI. 
 

 
Keywords: Artificial intelligence; internet of things; machine learning; network; sensors; risk 

management. 
 

1. INTRODUCTION 
 
Every year, 2.3 million workers die from work-
related accidents or diseases, which is 
equivalent to over 6000 deaths every day [1]. 
Approximately 340 million occupational accidents 
are reported, and 160 million people are directly 
affected by occupational diseases annually. In 
fact, occupational diseases are a major cause of 
death among workers, and exposure to 
hazardous substances alone contributes to an 
estimated 651279 deaths annually [1]. Accidents 
occur more frequently in the construction industry 
than in other industries. Typically, the 
construction industry contributes to more than 
150000 accidents and injuries on an annual 
basis. It was over 70% more likely to have 
injuries than other industries [2]. Occupational 
health and safety (OHS) management has been 
increasingly emphasized to safeguard workers 
from work-related incidents and diseases [3]. 
OHS is fundamentally a systematic approach 
that organizations adopt to ensure the safety, 
health, and well-being of their employees while 
they perform their duties at work. Even so, it fails 
to totally prevent work-related incidents from 
occurring, and it often requires continual 
commitment and improvement to protect workers 
more effectively. 
 
Ensuring the safety, health, and welfare of 
workers involves substantial investment and 
commitment but is rewarding in the sense that it 
could bring long-term cost savings through the 
reduction of compensation claims, legal fees, 
and insurance premiums [4]. Additionally, it can 
improve staff relations and morale as staff 
perceive that employers care about their well-
being and value their contribution. It also gives 
companies a competitive advantage through 
building reputation, trust, and brand [4]. 
Companies and institutions have increasingly 
adopted OHS management to safeguard the 
health and safety of their employees. OHS 

management typically involves identifying, 
assessing, and controlling the hazards and risks 
that may arise from or affect the workplace. It 
includes policy establishment, goal-setting, 
implementation of policies, systems, and 
standards, as well as record-keeping to monitor 
and improve OHS performance [5].  
 
OHS risk management plays a central role in 
OHS management. It is the specific approach 
employed to identify, assess, and control risks 
associated with work activities and workplaces 
[6]. It aims to prevent or minimize the occurrence 
and consequences of work-related injuries, 
illnesses, and incidents, thus improving the OHS 
performance of an organization [7]. It commonly 
involves delineating scope, context, and criteria 
for risk management, considering an 
organization’s goals, expectations, and issues 
[8]. It provides the platform for communication 
and consultation with stakeholders to garner their 
involvement, feedback, and support in the 
management of occupational risks. It 
incorporates the practice of risk assessment, 
which primarily aims to identify occupational 
hazards and evaluate occupational risks using 
appropriate methods and tools [8]. Subsequent 
to risk assessment, the risks are eliminated or 
reduced to an acceptable level following the 
hierarchy of control, which comprises elimination, 
substitution, engineering controls, administrative 
controls, and personal protective equipment, in 
the order of decreasing preference. Risk control 
measures require frequent monitoring to ensure 
their effectiveness and compliance. The risk 
management process is reviewed periodically to 
identify opportunities for improvement and 
learning [8]. However, the conventional practices 
of OHS risk management may face the 
limitations of not being able to effectively capture 
all significant risks in workplaces, leading to low 
compliance with OHS standards and regulations. 
Moreover, the dependence on manpower to 
identify occupational risks may lead to under-
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assessment of risks in areas that are hard to 
access. The rapid changes and emerging 
challenges in the work environment can also 
pose new and complex OHS risks [9]. 
 
Artificial intelligence (AI) is the ability of a 
computer system or a robot to perform tasks that 
normally require human intelligence and these 
tasks include understanding language, 
recognizing images, making decisions, or solving 
problems [10]. AI can be applied to diverse 
areas, such as healthcare, education, 
entertainment, and finance. Al offers the benefits 
of enhancing human capabilities and productivity, 
for instance by automating tedious or dangerous 
tasks, improving accuracy and efficiency, or 
providing new insights and solutions [10]. The 
application of AI in OHS risk management can 
facilitate OHS risk management by automating 
hazardous or repetitive tasks, detecting and 
alerting potential risks, or providing guidance and 
training to workers. Al enables robots or drones 
to perform inspections, maintenance, or repairs 
in dangerous environments, such as mines, 
power plants, or construction sites [11]. 
Furthermore, Al facilitates the collection and 
analysis of data related to the physical, mental, 
and emotional states of workers, hence, the 
monitoring and improvement of their well-being 
and performance. With these data, Al                      
provides feedback and support to workers by 
giving early warnings or interventions to                   
prevent burnout, depression, or anxiety [10]. Al is 
helpful for OHS training as it can create                    
realistic and immersive simulations or                   
scenarios, particularly for emergency                   
response training, which offers vivid learning 
experiences to workers. This permits workers to 
visualize various emergencies at workplaces 
better and handle these situations more 
effectively [11].  
 
With the rise of Al and increasing use of Al in 
diverse sectors, this review aims to 
systematically present the advances in the 
applications of Al in various aspects of OHS                  
risk management across the construction,      
mining and oil and gas sectors. It aims to 
synthesize the barriers stemming from the 
employment of AI in these sectors to improve its 
prospects. This review contributes to a better 
understanding of the functions and performances 
of Al in OHS risk management to enable the 
optimization of their applications. Insights into its 
limitations permit further studies aiming to 
improve the integration of Al with OHS risk 
management. 

2. APPLICATIONS OF AI IN OHS RISK 
MANAGEMENT 

  
Al, in the forms of machine learning, computer 
vision, knowledge-based systems, and natural 
language processing, has been introduced or 
developed [12]. Computer vision involves 
capturing images using specialized cameras and 
employing sophisticated algorithms to process 
and analyze the images produced for decision-
making. The knowledge-based system centers 
on feeding existing knowledge to an inference 
engine with a user interface that enables users to 
interact with the engine. The knowledge-based 
system is essentially a collection of expert 
knowledge, experiences, or past cases useful for 
decision-making [13]. A knowledge-based 
system can be divided into 1) expert systems 
with the knowledge base comprising specific 
expert knowledge or experience in a particular 
sector to simulate experts’ decision-making for 
problem-solving, 2) case-based reasoning 
system where the knowledge base comprising 
essentially experiences or past cases is input to 
the system for critical analysis, interpretation, or 
prediction. It also relies on expert knowledge for 
the selection of appropriate experiences or 
cases, 3) intelligence tutoring systems, which 
simulate human tutors and can provide 
customized instruction or feedback to learners, 
hence, helpful for OHS training, and 4) database 
management system, which is a software system 
with the functions of storing, organizing, and 
manipulating data in a structured and consistent 
way. It serves as the knowledge base and 
supports expert systems by providing data 
storage, processing, and management [14]. 
Natural language processing is a branch of Al 
that creates systems capable of understanding 
and manipulating human language, such as text 
or speech. It is frequently used for speech-to-text 
conversion, natural language generation and 
understanding, and text summarization [12]. The 
roles of Al in OHS risk management revolve 
around the use of different forms of Al to identify 
occupational risks and reduce the risks workers 
are exposed to. For instance, Al in the form of 
computer vision and knowledge-based systems 
may be employed to monitor workers using real-
time data fed by devices comprising sensors, 
cameras, and wearables. This facilitates OHS 
surveillance and the provision of warnings in 
situations where workers may encounter 
significant risks [15]. The development of AI also 
permits the automation of hazardous and 
physically demanding tasks using robots or 
cobots. This reduces workers’ exposure to the 
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risks associated with the performance of these 
tasks. AI has the ability to analyze large amounts 
of occupational data to identify patterns, trends, 
and OHS risks due to the incorporation of 
machine learning or predictive analytics [11]. 
 

2.1 AI in the Construction Sector 
 

The construction sector is one of the most 
hazardous industries in terms of OHS risks. The 
common OHS risks associated with the 
construction sector are 1) traumatic injuries due 
to falls, electrical shock, machinery, tools, or 
vehicles, 2) exposure to hazardous chemical 
substances such as cement, asbestos, dust, and 
solvents, 3) physical hazards arising from 
exposure to noise, vibration, heat, cold, or 
radiation, and 4) ergonomic hazards including 
poor posture, manual handling, or repetitive 
motion [16,17]. These risks can produce multiple 
health problems inflicting construction workers, 
such as musculoskeletal disorders, respiratory 
diseases, noise-induced hearing loss, and 
dermatitis [16,18, 19]. 
 

Al has provided an avenue to reduce these risks 
in the construction sector. Zhang et al. developed 
a framework to identify fall hazards in the 
planning stage of construction projects with 
algorithms capable of checking safety rules 
automatically [20]. The framework serves to 
incorporate safety into building information 
modeling and has been tested on the model of a 
construction project. The tool was observed to 
have a good ability to detect unprotected slab 
edges and recommend the installation of a 
guardrail system according to safety rules. The 
tool is also able to suggest installation and 
removal work in addition to giving options and 
procedures to ensure adequate fall protection in 
line with the guidelines during the design and 
planning stages [20]. Nonetheless, the 
framework requires checking to ensure the 
validity of the fall protection measures suggested 
in fast-changing construction projects. The level 
of detail of the tool also needs further 
improvement [20]. The framework is a typical 
example of an expert system with safety rules as 
inputs to the knowledge base. 
 

Another study focused on developing an 
automated system for safety monitoring of 
construction activities. The system is cloud-
based and enables real-time monitoring of 
construction sites [21]. It utilizes Bluetooth low-
energy technology for location detection and 
building an information model for hazard 
identification, as well as a cloud-based platform 

for communication of safety issues (Fig. 1). The 
system was found to successfully detect unsafe 
conditions on-site and analyze how the risks 
could impact workers based on their real-time 
positioning [21]. The system is akin to computer 
vision, but it uses Bluetooth for worker 
positioning instead of cameras to generate 
images. This enables the algorithm to analyze 
the risks the workers are exposed to. In a 
separate study that employed computer vision or 
its variant, a radio-frequency identification 
localization system was integrated with building 
information modeling and cloud computing for 
construction site management. The system with 
localization and visualization functions has the 
potential to improve the safety management of 
construction sites [22]. Machine learning 
algorithms comprising boosted trees and deep 
learning have been used to analyze causes of 
injuries and predict injuries in the power 
infrastructure sector [23]. The system was 
reported to have a better predictive performance 
by comparing the predicted values against the 
observed values, with deep feedforward neural 
networks yielding the best performance. This 
predictive case-based reasoning system is 
beneficial for safety risk management in the 
power infrastructural sector [23].  
 
Recognizing the limitations of assessing the risks 
of occupational incidents qualitatively, Kang et al. 
developed a framework that integrates 
interpretable machine learning and conventional 
analysis [24]. The framework has been trained 
with a large sample of injured workers to identify 
the key factors that influence the severity of 
occupational incidents, which is presented as lost 
workdays. The number of lost workdays 
determines if an injury is classified as moderate 
or major [24]. The framework revealed that the 
most experienced and least experienced workers 
require interventions via increasing attentiveness 
and reinforcing safety training, respectively, and 
it is crucial to manage defective personal 
protective equipment [24]. A novel graph-based 
framework was also introduced to effectively 
process written safety rules and images to 
facilitate the identification of occupational 
hazards [25]. The framework uses natural 
language processing to automatically extract 
regulatory texts and present the most important 
information (Fig. 1) [25]. It also integrates deep 
learning for object detection and geometric 
relationship analysis for individual detection, to 
process on-site images. By incorporating 
computer vision and natural language 
processing, this framework facilitates hazard 
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identification and could successfully spot hazards 
related to working on height and operating a 
grinder [25]. 
 
Text classification has been conducted for 
grouping safety standards according to the 
causes and types of offenses [26]. This enables 
safety practitioners to relate safety offenses to 
the relevant safety standards. To effectively do 
so, the groups or labels for text classification 
were determined and weighting schemes were 
applied to determine the weights of the groups. 
In essence, the text classification method 
comprises text preprocessing, feature section, 
feature weighting, and performance evaluation 
[26]. The relative performance of the text 
classification and the satisfaction levels of the 
text classification labels can be predicted with 
two candidate labels, namely fall protection 
issues and violation causes. The method 
provides the basis for text classification using 
standard machine learning to improve the 
application of natural language processing in 
construction safety inspection [26]. Additionally, 
the popularization of building information 
modeling has enabled safety management to be 
incorporated into the early design and planning 
stages of construction projects (Fig. 1). An 
automated checking function has been 
developed to enable simulation and visualization 
of the movements of workers on scaffolds over 
building information models [27]. The framework 
has computational algorithms that identify safety 
hazards arising from the activities of workers on 
scaffolds to facilitate the formulation of 
preventive measures. It could be added to 

building information modeling software as a plug-
in and offers the advantage of singling out safety 
hazards that are overlooked by project managers 
[27]. Overall, computer vision has gained much 
popularity in construction safety management. In 
addition to the studies mentioned above, Zhang 
proposed a machine vision technology to 
manage the safety of civil engineering projects, 
which integrates real-time target detection, 
spatial analysis between construction scenes 
and targets, and an early warning platform (Fig. 
1) [28]. This enables early warnings to be 
triggered upon the detection of a predefined 
unsafe condition.  
 
Al is becoming more prevalent in construction 
safety training. A Bayesian-based knowledge 
tracking model has been built to suggest training 
materials based on the learning pace of an 
employee (Fig. 1) [29]. The model can predict an 
employee’s performance using data such as 
cognitive abilities and past training records. It can 
calculate the probability of an employee 
mastering construction safety concepts and 
generate personalized suggestions for future 
training to increase training effectiveness [29]. In 
another study, an Al-facilitated real-time 
personalized safety training model was put 
together. The model uses a user-oriented 
simulation system integrating GPS and cloud 
computing [30]. The system collects information 
related to hazards, corresponding safety 
instructions, and project information, which is 
then processed and delivered to workers based 
on their job characteristics to improve their safety 
awareness [30]. 

 

 
 

Fig. 1. Applications of Al in the construction sector 
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2.2 AI in the Mining Sector 
 
The mining sector is also a high-risk sector 
where accidents involving heavy machinery, 
explosives, and hazardous substances are likely 
to occur. These accidents can result in injuries, 
fatalities, or disabilities. Mining exposes workers 
to dust, gases, and fumes, which can cause lung 
diseases such as silicosis, coal workers’ 
pneumoconiosis, asbestosis, and cancer. Mining 
generates high levels of noise, which can 
damage the hearing of workers and lead to 
industrial deafness [31]. Therefore, it is crucial to 
manage the risks in the sector and the 
emergence of AI could potentially increase the 
efficiency of risk management. Yedla et al. 
employed machine learning models comprising 
artificial neural networks, decision trees, and 
random forests to analyze the outcomes of 
mining accidents [32]. These models 
demonstrated better performance than the 
conventional logistic regression model in 
predicting accident outcomes. The key predictors 
of days away from work are mining experience, 
shift start time, and accident time [32]. As with 
the construction sector, computer vision utilizing 
sensors has been widely employed in the mining 
sector. A blue-tooth-based underground 
navigation system capable of monitoring 
underground mining activities has been 
developed. This was enabled by an underground 
Bluetooth network [33].  
 
Exposure to toxic gases is a major hazard in the 
mining industry, and detecting these gases 

without any technological aids could be 
challenging. An attempt has been made to 
develop a fully automated remote monitoring 
framework that relies on wireless sensors (Fig. 
2). It incorporates Ohm’s law, mobile sensing, 
and decision-making Al [34]. The framework has 
been tested on real-life applications and was 
designed to mimic the knowledge of safety 
engineers concerning toxic gas exposure. It aims 
to provide early warnings when risks are 
detected [34]. This framework combines 
computer vision and an expert system for risk 
management of underground mining. Sensor 
technology has gained much popularity in the 
OHS risk management of the mining sector. In 
another study, sensors attached to personal 
protective equipment, such as hard hats and 
safety glasses, were connected to smartphones 
and smartwatches to collect data on 
underground mining hazards (Fig. 2) [35]. This 
has enabled real-time information and warnings 
to be provided to raise situation awareness. The 
technology can also predict OHS incidents to 
enable timely intervention [35]. A novel fuzzy 
logic system has been tested to assess fire risk 
and severity in an underground coal mine. It is 
worth noting that this system also relies on 
extensive sensor nodes to collect environmental 
data, such as gas concentrations, temperature, 
and humidity [36]. These data are sent to an 
observation system with a fuzzy model 
incorporated for real-time decision-making. The 
fuzzy model is comparable to an offline 
monitoring system that requires manpower and 
expert inputs [36].  

 

 
 

Fig. 2. Applications of AI in the mining sector 
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Furthermore, the Internet of Things and an 
autonomous robot have been employed to 
monitor the safety of underground mines [37]. 
The autonomous robot was integrated with a 
wireless sensor network, which enabled it to 
access areas in an underground mine not 
reachable by humans (Fig. 2). The sensor 
network could collect data on the presence and 
concentrations of hazardous gases, availability of 
oxygen, air temperature, air velocity, and 
humidity of the mines [37]. Besides, they can 
capture data on mine water quality, such as pH, 
sulfate content, electrical conductivity, and heavy 
metal contents. The robot can maintain 
instruments for the Internet of Things, which 
control the robot and sensors. Using a robot 
significantly reduces the risks of accessing 
unknown areas in an underground mine for 
maintenance or mining activities [37]. 
Additionally, the Internet of Things has found 
potential applications in lockout/tagout 
procedures by establishing an intelligent machine 
monitoring system based on the Internet of 
Things [38]. Defective lockout/tagout procedures 
have been identified as a major contributor to 
machine-related incidents. The monitoring 
system comprises a proof-of-concept system and 
a subsequent system upgrade with more 
sensors, safety metrics, and algorithms 
incorporated. The former aims to provide real-
time information on intrusions, lockout/tagout, 
and safety status of a concrete batch plant 
without involving automation [38]. In the second 
step, the design is optimized according to the 
ultimate use of the system for large-scale surface 
mines. The system can be expanded to include 
predictive failure analysis based on the database 
established in the early stage and proximity 
detection with more sensors installed [38].  
 
A smart safety helmet incorporating a gas sensor 
has been developed to detect methane and 
carbon monoxide and transmit the data to a 
control center through a built-in wireless module. 
The data triggers an alarm when methane or 
carbon monoxide concentrations exceed the 
limits [39]. A smart safety helmet has also been 
developed to monitor workers' exposure to 
respirable silica dust at surface mines [40]. The 
helmet has a light video camera mounted. Dust 
exposure is measured with a dust monitor carried 
by mine workers, which can gather video and 
dust exposure data every two seconds [40]. The 
information stored in the monitor can be 
downloaded and analyzed by software and 
subsequently used for implementing exposure 
control [40]. An intelligent eyewear technology 

has been introduced for the mining sector, 
particularly hard rock mining. The intelligent 
eyewear offers a time-managing function for 
mining equipment operation. It also offers useful 
mining information, and production process 
monitoring [41]. The eyewear is equipped with a 
global positioning system (GPS) and 
communication features to exchange information. 
The glasses act as smart displays to convey 
mining operation information conveniently. The 
camera attached to the glasses can capture 
images or videos of the operations and send 
them to a control center [41]. Like smart 
eyewear, smartwatches can communicate with 
mine workers about mining operations, alert 
them on the mining risks, and permit them to 
send crucial information on mining. 
Smartwatches have software that facilitates the 
navigation of information related to mining 
operations and logistics [41].  
 
As with the construction sector, applications of Al 
in the mining sector mainly focus on computer 
vision through cameras and sensors installed on 
devices such as robots, eyewear, safety helmets, 
and watches. These devices either have an in-
built knowledge-based system or are connected 
with one via wireless technology for the 
exchange of information essential for OHS risk 
control in mining operations. The exchange of 
information between devices and the data 
management system, often a cloud, requires the 
Internet of Things. The devices can be used 
alone or combined, as with a safety helmet and a 
smartwatch, to capture and display information.  
 

2.3 AI in the Oil and Gas Sector 
 
The oil and gas sector is a subset of the mining 
sector. In Malaysia, 1021 occupational accidents 
were recorded in the oil and gas sector in 2023 
and 18 of the accidents were fatal. The accident 
frequency rate was 0.69, while the severity rate 
was 17.97 per million man-hours worked [42]. 
Globally, the oil and gas sector has an average 
fatal accident rate of 3.0 per 100000 workers, 
higher than the average rate of 2.3 for all 
industries. The most common types of fatal 
accidents in the oil and gas sector worldwide are 
transportation incidents (41%), contact with 
objects and equipment (25%), and fires and 
explosions (15%) [43]. Transportation accidents 
in the oil and gas sector are caused by vehicle 
collisions when transporting workers and 
equipment to and from well sites, often in remote 
areas. The hazards arising from struck-
by/caught-in/caught-between constitute three of 
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every five on-site fatalities in the oil and gas 
sector [43]. These hazards could result from 
moving vehicles or equipment, falling equipment, 
and high-pressure lines. Explosions and fires are 
also significant risks in the oil and gas sector, 
and they are often caused by flammable gases 
from wells and production equipment [44]. 
Workers may be subjected to fall hazards when 
accessing platforms and equipment high above 
the ground [45]. They may also need to enter 
confined spaces such as tanks, vessels, and pits 
containing hazardous gases or liquids or lacking 
oxygen [44].  
 
Al can help significantly in dealing with these 
hazards. Ibrahim proposed using a wireless 
sensing technology called ZigBee to collect 
crucial data from offshore or onshore sites of oil 
and gas exploration, which are remote or unsafe 
for human access [46]. ZigBee can have a wide 
coverage of 40 km through multi-hop 
communication capability. It allows real-time 
monitoring of subsea production via wireless 
connection with remote structures such as valves 
and metering stations, thus, ensuring timely 
collection of operational data for timely 
responses without needing human access to the 
remote sites [46]. In addition, wireless gas 
leakage detection systems have been introduced 
to address the safety concerns associated with 
leakage of and exposure to toxic and flammable 
gases plaguing the oil and gas industry [47]. The 
systems also rely on ZigBee technology, which 
consists of a network of gas sensors and 
wireless sensor nodes to form a monitoring 
system. The systems provided fast response 
time, which is measured as the duration between 
the sending of the first alert and the receiving of 
the first GPS reading [47]. A linear sensor 
network consisting of linearly positioned nodes 
provides an avenue for managing safety risks in 
oil and gas operations [48]. The network has a 
custom sensor board and algorithms that keep 
the network active all the time, detect and locate 
leakage, and deliver essential messages. It 
requires low energy to operate, has high data 
reliability, and reduces latencies [48].  
 
Rashid et al. developed a smart wireless sensor 
network to detect leaks in pipelines and assess 
their severity [49]. The network incorporates 
wireless communication and machine learning, 
the latter of which can study and determine the 
magnitude of leakages via negative pressure 
waves in the pipelines detected by sensor nodes 
[49]. As process safety is a crucial aspect of the 
oil and gas sector, multiple studies have been 

conducted to improve pipeline safety. In another 
study, a monitoring system combining a GPRS 
network, Internet, and wireless sensor networks 
was proposed to monitor the cathodic protection 
equipment of terrestrial pipelines [50]. The 
system collects cathode potential data timely and 
transmits the data to a control center for 
regulation. The system has been successfully 
tested and optimized in terms of reliability in data 
transmission and energy consumption [50]. 
Wireless sensor networks were also employed 
by Jung and Song to establish a safety 
monitoring system for industrial pipe racks [51]. 
The system comprises field nodes, field network 
gateways, and a control server. It was tested on 
petrochemical plants and was observed to 
assess the stability of the pipe rack structures 
and suggest risk management strategies 
satisfactorily [51]. Similarly, a wireless sensor-
based technology with a wide coverage has been 
established to detect propane leaks. The system 
was able to detect 91% of propane leaks in 3 
days, with a delay of 108 seconds on average 
[52]. Sensor-based technology has gained 
popularity in the oil and gas sector because it 
enables hazard detection and risk monitoring 
over large areas and at remote locations in real 
time with only small delays, thus, providing timely 
information and permitting timely responses. It is 
connected to a knowledge-based system, which 
provides an evaluation of the data gathered and 
proposes responding strategies based on expert 
recommendations or guidelines stored [53]. The 
knowledge-based system, particularly the expert 
system has also been proposed for OHS and 
process safety assessment of offshore oil and 
gas platforms [14]. The assessment system can 
generate an overall index based on the scores of 
various OHS aspects of an offshore oil and gas 
platform. The index scores can be linked to 
different risk levels, such as high, medium, and 
low risks, using the fuzzy expert system [14]. The 
fuzzy expert system produces safety scores that 
are comparable to those of a safety professional 
[54].  
 
As with the construction sector and the mining 
sector, the Internet of Things has an important 
role in the risk management of the oil and gas 
sector as it serves as a platform to connect items 
employed for risk management in the sector. An 
attempt was made to improve the architecture of 
the Internet of Things to better support the oil 
and gas value chain. The new architecture can 
more effectively identify problems in the value to 
increase business productivity and enhance OHS 
risk identification [55]. The emergence of digital 
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twins makes virtual replications of physical 
assets, systems, or processes possible. This 
helps simulate, monitor, and optimize 
performance. A digital twin can be updated with 
real-time data from sensors and integrated with 
machine learning and reasoning for decision-
making. In the oil and gas sector, a digital twin 
can help identify and mitigate potential hazards, 
such as equipment failures, leaks, fires, or 
explosions, by using real-time data and 
predictive analytics [56]. It can help improve the 
training and preparedness of workers by creating 
realistic scenarios and immersive experiences. It 
can also enhance collaboration and 
communication among different stakeholders, 
such as operators, regulators, and emergency 
responders, by providing a common platform and 
a shared view of the situation [56].  
 
Edge computing has come into the limelight in 
the oil and gas industry. It is a distributed 
computing framework that allows data to be 
processed and analyzed closer to their sources 
[57]. This can improve response times, save 
bandwidth, and enable new applications that 
require low latency and real-time insights. It has 
better responsiveness and throughput of 
applications. It is essentially a speedier 
alternative to a conventional cloud-based 
system, which powers the Internet of Things 
more efficiently [57]. With edge computing, the oil 
and gas sector can better monitor and optimize 
the performance of its assets, such as pipelines, 
wells, rigs, and refineries by using real-time data 
and predictive analytics [58]. This can help 
identify and mitigate potential hazards, such as 
equipment failures, leaks, fires, or explosions, 
and reduce operational costs and environmental 
impacts [58]. Furthermore, machine learning 
using the least squares support vector machine 
has been employed to characterize pipeline 
operation and leakage in the oil and gas sector. 
The system can detect and locate pipeline 
leakage more accurately and precisely [58].  
 
The application of machine learning has 
permeated the oil and gas industry. Kellogg et al.  
tested a new machine-learning approach with 
algorithms trained with a large pool of well data 
to evaluate the economic feasibility of well 
maintenance jobs for removing wellbore damage 
and restoring the natural permeability of a 
reservoir [59]. Ozigis et al. (2019) proposed 
using machine learning to identify oil-impacted 
land [60]. The system utilizes spectral bands 
provided by Landsat 8 and vegetation health 
indices to differentiate land plots contaminated 

with oil spills from those free of oil. The system 
can help control the risk arising from oil and gas 
accidents significantly, provided that the oil-
polluted and oil-free plots are properly classified 
[60]. The approaches of Al employment in the oil 
and gas sector are largely similar to the 
construction and the overarching mining sector 
involving extensive sensor networks to collect 
copious data that are fed to a knowledge-based 
or machine learning system for analysis, 
decision-making, prediction, and suggestions of 
responses. All these rely on a powerful data 
management system to store and quickly retrieve 
data for timely response. The Internet of Things 
is a versatile platform that connects different 
devices, particularly robotics, sensors, and 
control centers. It enables digital twins mimicking 
a facility or process to be created. Unlike the 
construction and mining sectors, the use of 
computer vision is less prevalent in the oil and 
gas sector, especially in harsh environments 
such as offshore platforms and subsea pipelines 
where the cameras may not function optimally.  
 

3. CONCLUSION 
 
The rise of Al has facilitated OHS risk 
management, which conventionally relies on 
expert judgment and may be constrained by the 
accessibility of sites. The common Al approaches 
are computer vision, sensor networks, 
knowledge-based systems for decision-making, 
machine learning for data analysis, prediction, 
and evaluation, the Internet of Things to enable 
communication of different devices or 
components connected to a network, and a data 
management system for storage, processing, 
and retrieval of data. Al has been extensively 
developed for use in the construction, mining, 
and oil and gas sectors. In the construction 
sector, Al can be employed as early as the 
design and planning stage by merging with 
building information modeling to identify hazards 
and manage risks of building or project models. 
Computer vision can capture the actual 
conditions of construction and mining sites and 
subsequently feed the data to a knowledge-
based or machine-learning system for hazard 
identification and risk assessment and, in some 
instances, prediction of the probability of a safety 
incident. It is less prevalent in the harsh 
environments of offshore oil and gas exploration 
sites but is useful at onshore sites and 
petrochemical plants. Similarly, extensive sensor 
networks established on-site facilitate the 
collection of crucial data related to site conditions 
for analysis by a knowledge-based or machine-
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learning system. These systems can provide 
warning and response strategies. Al is also 
helpful in creating personalized training for 
construction, mining, and oil and gas workers. 
The advancements in the Internet of Things and 
database management systems enable the 
speed of data transmission to be substantially 
improved and digital twins to be created for more 
efficient monitoring.  
 

Despite that Al has been successfully tested 
experimentally, its industrial applications may not 
be straightforward. The barriers of Al need to be 
addressed to improve their practical applications 
in OHS risk management. These barriers are: 
 

1. The high cost of Al implementation and 
maintenance may limit its accessibility and 
affordability for small and medium-sized 
enterprises. 

2. The lack of top-down support and skilled 
employees trained in Al may hinder the 
integration and adoption of Al solutions in 
OHS practices. 

3. The ethical, legal, and social implications 
of Al, such as algorithmic bias, data 
privacy, worker surveillance, and 
accountability, may pose challenges for 
OHS equity and governance. 

4. The uncertainty and complexity of Al may 
create new and emerging risks for OHS, 
such as human-machine interaction, 
psychosocial stress, and cyberattacks. 

 

These barriers require multidisciplinary research, 
collaboration, and regulation to ensure can be 
practically, responsibly, and widely used.  
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