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Abstract 
The mechanisms of changing the luminosity of various types of stars are con-
sidered. The problem of supercritical convection in an infinite plane layer is 
solved in the approximation of low velocities, the plane equation of which 
coincides with the equation for high velocities, a stationary solution is ob-
tained. It is shown that there minimum two mechanisms of luminosity oscil-
lations in stars: Supercritical convection in the upper layers of the star gene-
rates oscillatory changes in temperature and, accordingly, in the luminosity of 
the star, on the other hand, convection may have asymmetric periods. In the 
post-Newtonian approximation, the estimate of the frequency of changes in 
the luminosity of stars is corrected, and a general formula is obtained. 
 

Subject Areas 
Astrophysics, Cosmology 
 

Keywords 
Helium, Convection, Temperature, Gravity, Frequency 

 

1. Introduction 

The luminosity of stars in various aspects, in terms of the emission lines of 
chemical elements [1], the intensity of the total luminosity or luminosity fluctu-
ations is intensively studied. 

The values of the main parameters of stars, such as luminosity and central 
temperature, can be obtained from the basic equations of the theory of stability 
and equilibrium in stars. However, some results are not satisfactory, it is neces-
sary to obtain a new analytical scheme. From the theory of the internal structure 
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and stability of stars, it is possible to obtain a dependence for the central tem-
perature of any gaseous star [2]. There remains the question of fluctuations in 
the luminosity of stars. 

In the absence of gravity in the static case, the temperature in a spherical sys-
tem with a heat source in the center, as follows from Fourier's law, varies by 
hyperbola. It is argued that in pulsating variable stars, a change in volume can 
occur due to the instability between pressure and the force of gravity. This is 
doubtful because the pressure increases during compression, for example, ac-
cording to the adiabatic law kpV const= , где k = Cp/CV. That is, the pressure is 
inversely proportional to r3k, whereas the force of gravity decreases inversely 
proportional to r2. Thus, an equilibrium radius arises, and the equilibrium be-
tween pressure and gravity is stable. For RR Lyra and cepheid type variables, the 
Kappa luminosity change mechanism associated with He3 ionization is comple-
mented by a gamma mechanism associated with a lower temperature of ionized 
helium and a radius mechanism associated with a decrease in the surface area of 
the star during compression and an increase in its density. 

For semiregular variables, the change in luminosity is associated with convec-
tion in the outer layers, but it has not been investigated how the periodicity of 
luminosity arises. 

Convection in stars is usually considered within the framework of classical 
thermodynamics. It is believed that in the equilibrium state, heat transfer occurs 
only through radiation, photons are absorbed by atoms and re-emitted, or radia-
tion is scattered by free electrons. Convective mixing is determined only by 
temperature gradients. This approach leads to a contradictory result. Near the 
surface of the Sun, the thickness of the convective layer can reach about 104 km, 
in K-class stars it is noticeably larger, in M-stars it can reach almost to the cen-
ter, in stars hotter than F0, the convective layer is practically absent. It turns out 
that the hotter the star, the less convection. 

To study convection in stars without affecting the nuclear convective zone, it 
is necessary to consider a complete system of convection equations, for example, 
in the Boussinesq-Oberbeck approximation. equations of thermogravitational 
convection, equations of magnetic hydrodynamics [3], plasma equations [4] [5], 
So the theoretical investigation of it is too difficult task. 

Convective flows occur if the Rayleigh number is greater than a certain critical 
value, the equilibrium of the liquid becomes unstable. The symmetry of the infi-
nite horizontal layer and homogeneous heating conditions make possible peri-
odic structures—shafts, rectangular and hexagonal cells, which are unstable with 
respect to three-dimensional, two-dimensional long-wave longitudinal distur-
bances, etc. In the case of a limited horizontal layer, profiles of the soliton type 
are possible. In the supercritical region, linear theory allows you to choose a 
perturbation whose growth rate is maximal, stationary solutions of the nonlinear 
problem are found in a wide range of Rayleigh number variations, allowing you 
to determine the intensity of motion, heat flow, etc. It was found that the addi-
tional heat flow in the horizontal layer near the threshold increases linearly with 
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increasing supercriticality. 
The mechanisms of convection pulsations of semi-correct variables are the 

least studied [6]. 
In [7], the Stothers-Leung theory was further developed, according to which 

the pulsations of the luminosity of stars are associated with the sequentially 
synchronous inversion of giant convection cells in the shells of massive red su-
pergiants. The data in [7] are in good agreement with the data on long secondary 
periods of fluctuations in the luminosity of two stars, Betelgeuse and Antares. 

In this article, alternative mechanisms of fluctuations in the pulsations of the 
luminosity of stars are proposed. 

Some points of it can be shown using a simple model of convection equations 
in the Boussinesq approximation. 

2. Model Task 

Consider three-dimensional convection in a horizontal layer with heat-insulating 
surrounding arrays at small exceedances of the critical Rayleigh number. For 
simplicity and brevity, we investigate a linearized system in which the speeds are 
low. In the heat equation, we take into account the nonlinear gradient term. 
Then the system of convection equations will take the form 

0

0

0

pp U R Tg
T T Ug U T
t

divU

∇ − + =
 ∂− + ∆ + − ∇ = ∂

=  

where 
2

p
g L TR β δ
νχ

= , Τ-temperature deviation from the equilibrium distribu-

tion, Tδ -temperature difference at the boundaries of the layer, χ-thermal con-
ductivity, ν-kinematic viscosity; unit of length L is the width of the layer, velocity 
is measured in x/L, pressure is measured in 0ρ νχ . 

Let's choose a suitable coordinate system, then for the thermally insulated 
layer the boundary conditions will be written as 

0, 1; 0z zz z U T= = = ∂ =  
Excluding the velocity from the equations, we get the system: 

0

0

T T PT p T RT RT
t z z

Tp R
z

∂ ∂ ∂− + ∆ +∇ ∇ − + + = ∂ ∂ ∂
 ∂−∆ + =
 ∂

             (1) 

Since we are solving a model problem, for this system we can choose boun-
dary conditions in this form: 

0; 1; 0;Tz z P RTg
z

∂
= = = ∇ =

∂
�  или P RT

z
∂

= −
∂

. 

For this system, the solvability condition of an inhomogeneous system of dif-
ferential equations is obtained by integrating the expression for 2

z kT∂ , which is 

https://doi.org/10.4236/oalib.1108528


B. L. Ikhlov 
 

 

DOI: 10.4236/oalib.1108528 4 Open Access Library Journal 
 

obtained in k-th order, by the thickness of the layer. 
To consider processes having different time and spatial scales, we use the me-

thod of many scales. The functions of pressure and temperature can be 
represented as depending on a set of variables n

n mt a t= , where 1 2,t t , etc. are 
slow times; then the time derivative has the form: 

0

n
m n

n
a t

t

∞

=

∂
=

∂ ∑
 

In the future, we believe that all the fast processes have already passed and the 
functions Τ, P do not depend, at least, on 0t . 

For spatial variables (horizontal), we restrict ourselves to the first order in the 
series, assuming that in the zero-order the functions Τ, P have no dependence on 

0 0,x y : 

,m ma x a yξ η= =  

Then the derivatives of these coordinates have the form: 

;m ma a
x yξ η
∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂  

We use the small parameter method; with small supercriticities 0R R−  the 
wave number, temperature, pressure functions, as well as the critical Rayleigh 
number are decomposed in a series by degrees of the wave number: 

2 4 4
2

0 0 0
; ;n

p m n m n m n
n n n

R a R T a T P a P
∞ ∞ ∞

= = =

= = =∑ ∑ ∑              (2) 

Let’s substitute these derivatives and decomposition (2) into the system of eq-
uations and into the system of Equation (1). Using boundary conditions, we ob-
tain in zero order: 

0 0 0
0 0 0 ; 0

2
R T TP R T z

z
∂

= ⋅ − =
∂  

In the first order, we obtain that the functions Τ, P do not depend on 1t ; 

0 1 1
1 0 1 ; 0

2
R T TP R T z

z
∂

= ⋅ − =
∂  

In the second order, using the solvability condition, we obtain: 0 12R = , the 
functions do not depend on 2t ; 

[ ] ( )
2 4 5

23 3 40 0
2 2 0 2 0 2 0 2

2 2
2 2 3 2 5 2
R Rz z zP T z T z z R T z C

 
= ∆ − + − + ∇ − + + 

   

where 2 2,∆ ∇ —two-dimensional Laplacian and gradient, 2C —integration 
constant independent of z, 

( ] ( )
2 4

23 2 3
2 2 0 2 0 3 2

2 2
z zT T z T z z

 
= ∆ − + − + ∇ − 

   

In the third order, the calculations coincide with the calculations in the 
second order. We get: 
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[ ] ( )
2 4 5

23 3 40 0
3 2 1 2 1 2 1 3

2 2
2 2 3 2 5 2
R Rz z zP T z T z z R T z C

 
= ∆ − + − + ∇ − + + 

   

[ ] ( )
2 4

23 2 3
3 2 1 2 1 3 2

2 2
z zT T z T z z

 
= ∆ − + − + ∇ − 

   
the functions Τ, P do not depend on 3t . 
In the fourth order, using the solvability condition, we obtain a closed equa-

tion for T0: 

( )[ ] [ ]
2

2 220
2 0 2 0 2 0 2 2 0 2 0 2

2 6 6 0
21 12 5 5

T RT T T T T T
t

∂
+ ∆ + ∆ − ∇ ∇ ∇ − ∆ ∇ =

∂
    (3) 

Since the solution of a linear problem should have the form 

( ) ( )0 exp expT i iξ η=  

so, substituting this expression in (3), we get 2
8
7

R = . 

To get rid of the coefficients in Equation (3), we introduce variables 

0
2 63,

535
t T Tτ = = ⋅

 

then Equation (3) will be written as:: 

( ) 2 22
2 2 2 2 2 2 2 0T T T T T T T

τ
∂

+ ∆ + ∆ − ∇ ∇ ∇ −∆ ∇ =      ∂  
In a planar problem, when only one horizontal coordinate is involved, the eq-

uation goes into the following: 

( )4 2 2 3 0ξ ξ ξϑ ϑ ϑ ϑ+ ∂ + ∂ − ∂ =�                     (4) 

where Tξϑ = ∂ . For high speeds, the calculations are much more cumbersome, 
but the equation turns out exactly the same. In the stationary case, equation (4) 
has the solution 

2
0

2 2

2 sn
1 1

k
k k

ξ ξϑ −
=

+ +  
where k is the module of the elliptic Jacobi function associated with the wave-

number ma a a=  by the relation 
( ) 22 1

a
K k k

π
=

+
, where ( )K k  is a 

complete elliptic integral of the first kind, 0ξ  is an integration constant. 

Numerical analysis (4) shows that the temperature increases with time to the 
upper boundary of the layer. 

That is: equation (4) itself does not contain vibration modes, but it shows a 
periodic cessation of convection. 

Are large exceedances of the Rayleigh number of critical value characteristic 
for stars? i.e. the analytical solution of the Rayleigh-Benard problem for a ho-
mogeneous one-component liquid was investigated in [8], distributions of tem-
perature and velocity fields for supercriticality up to 63 10R = ×  are obtained. 
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For semi-controlled supergiants, the acceleration of gravity, which is included 
in the Rayleigh number, exceeds the terrestrial by at several orders of magnitude, 
so this calculation is valid for them with small supercritical exceedances. 

3. Dependence of the Oscillation Period on the Rayleigh 
Number 

It can be seen from the equations of the Boussinesq model that the harmonic 
dependence of temperature on time is realized in a linear system. 

Oscillatory modes in various convective nonlinear systems are well known. 
Vibrational regimes were experimentally observed during Marangoni concen-

tration convection [9]. Forced oscillations were studied in a system with mag-
netic convection, see [10]. The oscillatory mode of Rayleigh-Benard convection 
is investigated, and the critical value of the Rayleigh number is obtained in a li-
near system of nonautonomous Lorentz-type equations. 

Asymmetric oscillations in a convective system are considered in [11], and the 
dependence of the natural frequency of the system on the normalized Rayleigh 
number is obtained in the Lorentz model for Pr = 10. 

0.22 2.11 1.4rω ≈ + − ; 1.5 20r< < . Without restrictions on generality, one 
can put  

1 4 5c c Ra cω = + − ,  

where ci—characteristic parameters. 
Estimation of the frequency of changes in luminosity 

2 Gω ρ= π  

see [[12], p. 403]. 
The critical Rayleigh numbers depend on the wave numbers and on the di-

mensionless parameters of the medium: The magnetic Prandtl number, the 
Hartmann number, the Taylor number, the Rossby number. In massive bodies, a 
relativistic effect occurs. 

Rayleigh number Ra g∼ , that is, the Rayleigh number depends on the radius 
of the star, due to the dependence of gravity on the distance to the center, which 
is enhanced due to its non-classicity. For example, the equations of motion of a 
material point in a gravitational field in the case of velocities small compared to 
the speed of light and weak constant gravitational fields, the potential and equa-
tions of motion take the form 

( )2
441 2c gϕ = − + , ( ) Gmr C

r
ϕ = − +  

2

2

2 4 ;Gm a
r r r

ϕ ϕϕ ϕ∂ ∂
∆ = + = −∇

∂ ∂
π ∼ . 

In the post-Newtonian approximation ( )2a qϕ ϕ= −∇ + ∇ ,  

( )2 21
2

ϕ ϕ ϕ ϕ∇ = ∆ − ∆ , 24 4a qm g Gm r qGm rϕ ϕ= − +π π∇ + = = . So  
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( )4 1
3

g G r rρπ= + . Then the Rayleigh number ( ) 34 1r r L
Ra G

β
ρ

νχ
+π

= , and 

the natural frequency will be written as 

1 2 3c c G cω ρ= + −  
Thus, the natural frequency of asymmetric oscillations in the convection equ-

ations corresponds to the estimation of the period of changes in the luminosity 
of stars. 

4. Conclusions 

It is generally believed that in stars, the temperature directly below the photos-
phere increases extremely rapidly into the interior and radiation emission can-
not ensure the release of radiation from deeper hot layers, which is the cause of 
convection, which ensures the stability of the star. 

However, when convection occurs, mixing occurs, which leads to temperature 
equalization. 

The mechanism generating the oscillatory mode can be schematically 
represented as follows: 1) first, due to the outflow of energy in the form of radia-
tion and stellar wind in the surface layer of the star, the temperature difference 
generates intense convective mixing, which leads to an averaging of the temper-
ature over the layer, the temperature gradient decreases; 2) the same happens 
with the next, lower-lying layer; 3) the cooling of the upper layers continues to 
the level where thermonuclear fusion takes place, the energy of which, with the 
help of convection, heats the upper layers to the previous temperature, the tem-
perature gradient decreases again. 4) The cooling of the upper layers begins 
again, etc. 

Thus, there are at least two mechanisms of periodic pulsations of luminosity 
of semi-controlled variables: 
• temperature equalization along the upper layer, a decrease in the Rayleigh 

number less than the critical one and the cessation of convection, then the 
occurrence of convection due to heating from the stellar core and cooling of 
the upper boundary of the layer; 

• the occurrence of asymmetric oscillations in the convective layer. 
In the latter case, taking into account the dependence of the critical Rayleigh 

number on the gravitational field, it is possible to adjust the formula for the pul-
sation frequency of semiregular variable stars. 
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