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Abstract: The bridge between classical continuum plasticity and crystal plasticity is becoming
narrower with continuously improved computational power and with engineers’ desire to obtain
more information and better accuracy from their simulations, incorporating at the same time more
effects about the microstructure of the material. This paper presents a short overview of the main
current techniques employed in crystal plasticity formulations for finite element analysis, as to serve
as a point of departure for researchers willing to incorporate microstructure effects in elastoplastic
simulations. We include both classical and novel crystal plasticity formulations, as well as the
different approaches to model dislocations in crystals.

Keywords: crystal plasticity; dislocation slip; phenomenological model; physics-based model

1. Introduction

Analysis of the plastic deformations of metals is very important in many aspects of
the design of metallic goods, for example, in the design of the alloys which will be used in
the components, in their manufacturing process (e.g., shape forming), and in the behaviour
of the material in service, both to sustain the ordinary actions and to behave in a controlled,
predictable way (fracture, fatigue, crash-worthiness, etc.) [1,2].

Plastic slip is the most common plastic deformation mechanism in crystalline solids,
e.g., most of the metals. This slip takes place as a plastic shearing in specific planes and
directions governed by the arrangement of the atoms in a regular crystal structure [3].
This arrangement produces anisotropic elastic and plastic properties depending on the
packing of atoms into planes. Compact planes slide in particular directions, a movement
which is facilitated by the presence of dislocations (defects in the crystal arrangement,
e.g., by the absence of atoms in the structure, line defects). Plastic slips in crystals is a
plastic process that does not change the volume. However, for materials whose dominant
deformation mechanism is slip, it is usually the origin of yield stress and hardening in
macroscopic plasticity. Then, the study of crystal plasticity is fundamental to understand
in a rational way the macroscopic behavior of the polycrystal, and how different aspects
of the microstructure affect this behavior and the observed critical quantities like yield
stress, elastoplastic anisotropy, anisotropic local and global deformation, hardening, ther-
mal properties, etc. [4]. In the late 20th and beginning of the the 21st Century, after the
work of Pierce et al. [5], thanks to improved computational power, crystal plasticity finite
element simulations have received an important boost because these multiscale procedures,
in which the studied phenomena has a length scale of µm, can now be addressed com-
putationally. Then, computational homogenization schemes [6] are a typical procedure
to bring the microscale complexity to the macroscale in a simple, standarized way. Thus,
current computational power increasingly facilitates this type of analysis, bringing classical
materials science to the engineering office [7].
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Whereas the scale at which dislocation movements takes place is much smaller than
the continuum scale (or precisely because of that, which facilitates the requirement of
separation of scales), many effects may be studied at a mesoscale if we consider that a
given stress integration point represents a homogenization of the grain, or part of the grain,
so crystal plasticity computations give an implicit Representative Volume Element (RVE)
of the dislocation theory, being the direction of the Burgers vector the sliding direction,
and its modulus the computed sliding times the length of the RVE [8,9].

The choice of crystal plasticity theory as the simulation tool for different inelastic
phenomena depends itself on the objectives of such simulation. Several aspects of the
behavior of materials are easily extracted from this type of simulations. Examples are
texture evolution (e.g., anisotropy symmetries evolution as a result of the evolution of
crystallographic planes and grain structure), effects of grain size, effects of twinning or
impurities, speed of deformation, influence of grain shape (e.g., after cold forming), etc.
Furthermore, damage in these materials due to void nucleation in grain boundaries has
also been studied through crystal plasticity simulations (e.g., [10,11], see also [12]). The cou-
pling between the crystal plasticity and phase-field damage is also proposed to study the
fracture [13,14]. There are other options, mainly computational, to model plasticity-based
phenomena at different scales, specially through the combination of one scale with a larger
one in which the desired effect needs to be accounted for. Examples are atomistic mod-
els [15,16], dislocation dynamics models [17], and continuum models [18,19]. However,
crystal plasticity is probably the most used framework for incorporating the grain and
crystal structure as well as the inherent effects of dislocations in the continuum modelling.
Then, in this paper after a brief review of the physical aspects, we perform a review of
the main ingredients and formulations employed today in crystal plasticity simulations.
We finish with some demonstrative simulations as examples of the possibilities of crystal
plasticity. The purpose of the review is to serve as an introductory compact presentation
of current mostly used formulations for researchers (e.g., continuum mechanics ones)
becoming involved in the subject or willing to incorporate texture effects in advanced
simulations, for example, by computational homogenization. It is by no means a complete
review, so many important works and formulation aspects, are omitted. Advanced long
reviews taylored for researchers in materials science are available elsewhere [20–22].

2. Mechanism of Dislocation Slip: Physical Aspects

Crystals have different structural arrangements of atoms, see e.g., Figure 1. Directions
and planes are labeled according to Miller indices with reference to the unit cell edge
vectors ei. For example, direction sg = 1/

√
2(−1e1 + 1e2 + 0e3) in a face-centered cubic

(FCC) is referred to direction [1̄10] (in brackets, using integers and with possible minus
signs over the number), and the plane perpendicular to mg = (1e1 + 1e2 + 1e3)/

√
3 is

referred to as plane (111) in the present FCC case; see Figure 2. Equivalent families
of directions and planes (physically equivalent, obtained by rotations/symmetries) are
referred to as 〈110〉 = [1̄10], [11̄0], [110] and {111} = [111], [1̄11], [11̄1], [111̄], respectively
for a FCC. In the case of hexagonal crystals, four indices are often employed to allow
permutations when referring to families, one index along each possible edge direction,
being the last one the height c direction, Figure 1. The prismatic planes of HCP are (0001)
and {11̄00} = (101̄0), (011̄0), (1̄100), i.e., (hkl) → (hkil) with i = −h − k (not normal),
whereas the directions conversion is (uvw)→ (UVTW) with U = (2u− v)/3,V = (2v−
u)/3, T = −(u + v), W = w, e.g., the edges are the permutations of [21̄1̄0] and [0001]. The
FCC arrangement (Figure 2a) has atoms at the vertices and center of the faces of an ideal
hexahedron, resulting in a dense arrangement, and is typical of specially ductile materials
(e.g., Al, Cu, Au, Ag). FCC crystals have four {111} planes with three 〈110〉 directions
in each plane, therefore in total have 12 slip systems, referred to as {111}〈110〉. Body
centered cubic crystals (BCC), (Cr, Fe, W) have atoms in the vertices and in the center of the
hexahedron, and usual slip planes in the {110} family and direction 〈1̄11〉 (secondary slip
systems may become active for some materials and temperatures). Hexagonal close-packed
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arrangements have planes {0001}, {101̄0}, {101̄1} with directions 〈112̄0〉, although the
basal plane slip {0001} is favored for high height/base ratios (e.g., Mg, Co, Zn), and the
other ones for lower ratios (e.g., Be, Ti, Zr); these materials have a more limited slip.

FCCBCC HCP

a

c

Figure 1. Three typical crystal structures in metals. BCC = Body-Centered Cubic. FCC = Face-Centered Cubic. HCP =
Hexagonal Close-Packed. The form ratio for HCP is c/a, ideally c/a = 1.632, but for example, cadmium has c/a = 1.886
and berilium has c/a = 1.586 [23].

-

g

g

g
g

g

g
g

c

b

d

(a) (b) (c)

(d)

Figure 2. (a,b) Slip plane mg and direction sg in a FCC crystal. (c) Total dislocation in a FCC; b = 1
2 [1̄10] is the Burgers

vector. (d) Partial dislocation in a FCC lattice, where the dissociation is given as b = c + d = 1
6 [1̄21̄] + 1

6 [2̄11]. Adapted
from [23,24].

Dislocations are crystal defects which result, for example, from the absence of some
atoms in the otherwise regular arrangement, see Figure 2c,d. Microscopically, slip is a
result of the glide of many dislocations, facilitated by the stress field generated around
them. This glide does not happen simultaneously in all the grain, but occurs in a worm-like
movement, see Figure 3. The glide motion of a dislocation means that the dislocation
moves in the plane which contains both its line and the Burgers vector b (Figure 2c).
Dislocations and their associated local stress fields interact, blocking or further facilitating
their movement. The accumulation of hundreds or even thousands of these displacements
form a slip band. These slip bands can be easily observed on the surfaces of polished
specimens which have been subjected to plastic deformation. Dislocations, slip bands
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and slip displacements are small with respect to the size of the grains, so even when the
grain microstructure is considered, this plastic slip can be treated as homogeneous from a
macroscopic standpoint [25]. The dislocation mechanisms can be homogenized in the form
of statistical dislocation populations, and therefore, can be embedded in state evolution
constitutive equations in a crystal plasticity theory.

Figure 3. Progressive movement of a dislocation resulting in shear plastic deformation.

For a certain crystal, a slip system is determined by the normal direction of the slip
plane mg (which we can call the plane “direction”) and the slip direction sg in the crystal
coordinate system. In Figure 2a,b, the plane formed by red atoms is a typical slip plane in a
FCC crystal. At the atomic level, the forming of slip requires some breaking and reforming
of dislocation-stressed interatomic bonds. This can be interpreted as a plane of atoms
sliding over another parallel one on the slip plane, with the sliding direction as the slip
direction. This is a volume-preserving shearing process that is typically not affected by the
hydrostatic stress [26]. Slip planes mg are planes with the highest packing or atom density,
whereas the slip directions sg are usually directions in these slip planes in which the atoms
have the closest packing, see again Figure 2. The dyad sg ⊗mg constitutes the slip system
and γ̇g is the slip (shearing) rate. Sliding may occur in the positive +sg and negative −sg
directions (hence a FCC crystal may have 4× 3 = 12 slip systems).

Other important quantities of a slip system are the resolved shear stress (RSS) and
the critical resolved shear stress (CRSS). The former is the shear stress in the plane and
direction of the slip system, and the latter is the critical value for which sliding occurs.
For most crystals, the CRSS values of a certain slip system for both “+” and “−” directions
can be assumed to be the same [25].

The CRSS of a slip system depends on many factors, among them previous slips and
the crystal structure itself, because they play an important role due to the difficulty in
breaking and reforming interatomic bonds. Also, an increase in the temperature (increasing
vibration) or decrease in the strain rate (facilitating adaptation) increase the thermal activa-
tion of atoms and allow dislocations to overcome obstacles more easily. This results in an
effective lower CRSS [27–29]. Of course, the modification of the material composition by
adding other elements increase in general obstacles (breaking crystal regularity) and could
interrupt the glide of the dislocations as the case of BCC iron micropillar [30]. Dislocations
pile-up occurs as a cluster of dislocations which are unable to move past the grain boundary.
Each successive dislocation will apply a repulsive force to the dislocation incident with
the grain boundary. These repulsive forces act as a driving force to help overcoming the
energetic barrier for diffusion across the boundary, such that additional pile up causes
dislocation diffusion across the grain boundary, allowing further plastic deformation in
the material. Decreasing grain size decreases the statistical amount of possible pile up at
the boundary, increasing the amount of applied stress necessary to move a dislocation
across a grain boundary. The higher the applied stress needed to move the dislocation,
the higher the macroscopic yield stress [27]. This effect is well known as the Hall-Petch
effect/law [31,32]. Of course, given a grain size, these effects deppend on the amount of
statistical dislocations and other deffects.

In essence, slip plane mg, slip direction sg and the CRSS τc
g are crucial features of a

slip system. According to the Schmid law, they determine which slip systems are “active”
(sliding) [33]. The crystal structure is anisotropic, and the elasticity and plastic slip are also
anisotropic. Furthermore, different slip systems can have different CRSS, which further
determine the anisotropy of the material. This holds especially if the material is a single
crystal or a polycrystal with a strong texture. Only when the material is a polycrystal
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that has a large number of different crystallographic orientations, the material can be
considered as statistically isotropic on average; and von Mises plasticity is adequate. If the
crystallographic orientation has a defined statistical distribution, continuum anisotropic
models using Hill’s or Barlat’s yield functions with anisotropic or isotropic elasticity may
also be adequate in some cases. However, note that in continuum plasticity tracking the
macroscopic evolution of such anisotropy is not simple [34], which is a good reason to
resort to crystal plasticity.

Rate-dependent crystal plasticity modeling is all about computing the shear amount
of the activated slip systems from which the overall plastic deformation follows. The key
point becomes how to describe/model the evolution of the CRSS of slips. The “hardening”
evolution of the CRSS of slips is caused microscopically by the overcoming obstacles
during slip gliding and from the interaction with other dislocations, as well as from the
generation and annihilation of dislocations. As mentioned, temperature and strain rate are
related to the thermal activation, so they are also related to the easiness for a dislocation to
glide [27]. Different types of obstacles (as grain boundaries, solutes, and precipitates or
other phases) may hinder gliding [30]. Of course, some factors changing the dislocation
density or which may influence the interactions among dislocations may contribute to
work hardening. An important one is the already pre-existing dislocation density. As well
known, this could be reduced by heat treatments like annealing. Active secondary slip
systems can cause multiplication of dislocations. Slip transfer at grain boundaries and
cross slip can cause annihilation of dislocations. Stress concentrations (mainly at grain
boundaries) can even cause the nucleation of dislocations. In practice, the different cross-
interactions between dislocations which increase the CRSS are accounted for by means of
the latent hardening [35–37].

As explained below, to prescribe the evolution of the CRSS of the slip system, dif-
ferent models have been proposed in the literature by relating its value and evolution to
different variables during deformation. One widely used category follows a “phenomeno-
logical” approach [5,38–40]. They relate the evolution of the CRSS with the shear rate of
all the activated slip systems. Another popular type are the “physical” models, which
are dislocation-density based. This type of model relates the evolution of the CRSS with
the evolution of the dislocation density of all the slip systems, e.g., the Taylor law [41],
the early models [42,43]. This approach is extended to account for more detailed factors that
influence hardening, e.g., the annihilation of dislocations [44]; the latent hardening [45–47];
the grain size effect [48]; the slip transfer at the grain boundary [49]; the influence of strain
gradient [50]; the incorporation of phase transformation [51].

Dislocation slip mechanisms are not the only ones present in crystals producing
permanent deformations. Aside, there are other types of mechanisms as displacive (difu-
sionless) transformations and twinning. The former is a rearrangement of the atoms of a
crystal structure to form another structure without a relevant change in volume. The most
important case appears in carbon steels (e.g., martensitic transformations). Another plastic
mechanism is twinning deformation, which produces mirrored structures. The treatment
of these additional mechanisms are out of the scope of this review.

3. Continuum Framework of Crystal Plasticity
3.1. Kinematics

As mentioned, the structure of a crystalline solid at the µm scale may be understood,
and hence it is often modelled, as an aggregate of volume elements (finite elements), or lat-
tice blocks (voxels). This constitutes the reference “undeformed” lattice, which contains
dislocations (hence microscopically deformed); Figure 2. At the continuum scale (e.g., at a
stress integration point in a finite element, computed from the reference coordinates X,
the updated coordinates x = X + u, and displacement field u as F = ∂x/∂X = I +∇Xu
with ∇X being the reference-coordinates gradient), the deformation can be considered as
composition of two basic mechanisms that take place simultaneously: (1) slip between
lattice blocks (as an homogenization of dislocation slips), followed by (2) elastic lattice
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distortions which include (3) lattice rotations (local or “elastic” and rigid-body) that also
arise under a general deformation gradient F. Rotations produce observable phenom-
ena of geometric origin, such as the geometric softening of crystals due to their reori-
entation [52] (similar to structural P-δ effects). In consequence, at large deformations,
Kröner and Lee [53] introduced a multiplicative decomposition of F into plastic slips and
crystal “elastic” deformations [54,55]. Whereas F is a compatible deformation gradient
(X-integrable from the potential u(X) or F−1 is x−integrable from u(x)), it is decomposed
into two (local, incompatible) deformation components as:

F = FeFp (1)

where the plastic deformation gradient Fp is irreversible and transforms the reference con-
figuration into a fictitious local state, termed intermediate configuration. This (“elastically
unloaded”) intermediate configuration is “stresses-free” and is considered to maintain an
“undeformed” slipped lattice. In turn, the elastic deformation gradient Fe is the deformation
considered reversible, and includes rigid body rotations; namely after an overimposed
rotation Q we have F+ := QF = QFeFp = F+

e Fp. The possible indeterminacy of the
intermediate configuration respect to arbitrary rotations of the type FeQTQFp has involved
several discussions (see e.g., [56–58]). In summary, specially in the case of crystal plasticity,
Fp is continuously time-integrated, so it is always uniquely defined. Remarkably, the con-
servative/dissipative character of the two gradients give an important physical difference
in their polar decompositions: whereas Fe = ReUe is meaningful in the sense that Re are
path-independent rotations which in principle do not enter the constitutive equations and
Ue are path-independent stretches that may be used in a stored energy as state variables,
Fp = RpUp is physically meaningless because the crystallographic slip does not change
the orientation of the crystal lattice even though Fp include mathematically a rotational
part; stretch and rotations are related by the isoclinic flow and must be considered in an
incremental setting. Indeed, this is an argument to build the formulation in terms of elastic
measurements, avoiding also weak-invariance issues [59,60].

As mentioned, whereas F is compatible, the gradients Fe and Fp are incompatible,
meaning that for general non-homogeneous deformations we have

b̄ = −
∮

Γ
dξ = −

∮
Γ

Fp · dX = −
∮

Γ
dX · FT

p 6= 0 (2)

where dξ is the transformation in the intermediate configuration of the material differ-
ential dX, and Γ is the transformation of a close circuit C in the reference configuration,
i.e.,

∮
C dX = 0. Even though the gradients are to be interpreted in a continuum sense (at a

scale much larger than that of the dislocations), b̄ represents the resultant Burgers vector
(net Burgers vector of the dislocations tansversing Γ); it may be conceptually interpreted as
the Burgers vector b (the sign may be reversed) when one dislocation is present; i.e., b̄ has
a modulus proportional to the amount (density) of dislocations; see an ilustration of the
concept in Figure 4 motivated in the typical Burgers circuit, and a discussion of the contin-
uum/crystallographic views in [61]. To the last integral in Equation (2), the generalized
Stokes theorem may be applied∮

Γ
dl ∗ A =

∫∫
SΓ

(ds× ~∇) ∗ A (3)

where SΓ is a surface with support on Γ, dl is a line differential of Γ, and ds is a surface
differential of SΓ. The operation ∗ is any operation consistent with the physical object A
(vector or tensor of any order), and ~∇ indicates that the operator operates on A. Then

b̄ =
∮

Γ
dX · FT

p = −
∫∫

SΓ

(ds× ~∇X) · FT
p = −

∫∫
SΓ

(∇X × FT
p )

T · ds (4)
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where the last identity is inmmediate using index notation. In dislocation density based
models, the Kröner-Nye tensor α is handy [62,63], usually defined as the tensor field α(X)
such that

b̄ = bb̂ =
∫∫

SΓ

α · ds⇒ α = −1
b
(∇X × FT

p )
T (5)

Of course, because the deformation gradient F is compatible, so
∮

c FeFp · dX =
∮

c dx = 0,
the same integral may be obtained from the spatial configuration and dξ = Fp · dX = F−1

e ·
dx; i.e., α(x) = −1/b(∇x × F−T

e )T . For the case of infinitessimal deformations, splitting
the local displacement into elastic and plastic local (incompatible) parts (u = ee + up),
we immediately obtain α = − 1

b (∇× (∇up)T)T = 1
b (∇×∇(ue)T)T , where we used the

small strains approximation F−1
e ' I −∇ue. Note that for homogeneous elastic or plastic

deformations α = 0 (dislocations are not geometrically needed because gradients are
compatible). Indeed, Nye related them with the curvature in the deformation field.

b b
Figure 4. Ilustration of the concept of incompatibility through a moving dislocation. (Left) circuit is closed, locally
compatible. (Center) plastic flow (e.g., a dislocation movement) produces an incompatible field, because the circuit is not
closed by the amount b. (Right) Elastic deformations bring the field compatible.

The multiplicative decomposition is accepted in crystal plasticity, but at a single inte-
gration point in a finite element program, the decomposition assumes that the represented
volume is fully transversed by dislocations. However, in reality, this assumption is not
fulfilled; in general, there is still a dislocation content between neighboring material points
if both experience different slip system activity from nonhomogeneous deformations, even
if a full traverse by dislocations or a (statistical) homogeneous population is considered for
individual material points. Much research is ongoing in the seek of the best formulation to
take into account these effects [64–73].

The constitutive law can be obtained from the Helmholtz free energy density expressed
in the intermediate configuration as proposed by [8,69,74]. The free energy density can be
decomposed into the elastic and plastic parts [8]. The elastic part is recoverable through
elastic strain unloading, whereas the plastic part needs some plastic deformation to recover
it (accounts for example, for kinematic hardening).

Ψ = Ψe(Fe) + Ψp(Fp, q) (6)

where q is a set of internal variables. The second Piola-Kirchhoff stress tensor in the
intermediate configuration then is obtained, for example, using Green-Lagrange strains, as

S|e =
dΨe

dEe
(7)

being Ee the Green-Lagrange elastic strain tensor and S|e its work-conjugate stress tensor
(both living in the intermediate configuration). Note that the strain energy may be written
in terms of any arbitrary deformation measure, and the derivative of the energy respect
to that measure gives the work-conjugate stress measure in the same configuration. If the
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elastic strain energy Ψe is defined by a quadratic potential of the Green-Lagrange elastic
strains, S|e can be obtained as a linear function of Ee,

S|e = C : Ee =
1
2
C : (FT

e Fe − I) (8)

where C is the fourth-order elastic tangent moduli tensor of the single crystal.
Considering the decomposition in Equation (1), the velocity gradient L can similarly

be decomposed:

L = ḞF−1 = ḞeF−1
e︸ ︷︷ ︸

Le

+Fe ḞpF−1
p︸ ︷︷ ︸

Lp

F−1
e = Le + FeLpF−1

e (9)

being Le and Lp the elastic and plastic velocity gradients. It is noted that the total de-
formation gradient is decomposed multiplicatively, whereas the decomposition of total
velocity gradient is additive. Furthermore, both L and Le are defined with respect to the
current configuration. The plastic velocity gradient Lp, however, lives in the intermediate
configuration, so it requires a mapping (push forward) from the intermediate to the current
configuration, as shown by Equation (9).

Rice [54] assumed that for multislips, the plastic velocity gradient Lp is the sum of all
crystallographic slip rates:

Lp = ∑
g

γ̇gsg ⊗mg (10)

where γg is the internal variable that accounts for the accumulated plastic slip in each glide
(slip) system g; vectors mg and sg are, respectively, unit normal vector to the slip plane
and the unit vector in the slip direction that define the same glide system g in the reference
configuration. An important aspect here is that the addition in Equation (10) is not exact
in discrete algorithms, because the order in which the different slips take place changes
the final result. The reason is that after one slip has taken place, Lp for the next one would
be in a different configuration; see Figure 5. However, the approximation is considered
acceptable in the literature given that steps are typically small. Indeed, recently we have
proposed a different framework in terms of corrector rates [75], which results immediately
from the chain rule applied to Fe(F, Fp) ≡ FF−1

p , namely

Ḟe =
∂Fe

∂F

∣∣∣∣
Ḟp=0

Ḟ +
∂Fe

∂F

∣∣∣∣
Ḟ=0

Ḟp =: tr Ḟe +
ct Ḟe (11)

where ct Ḟe is the continuum corrector rate of the elastic gradient, and tr Ḟe is the contin-
uum trial rate of the elastic gradient; see further details about the elastic corrector rates
framework in [75–78]. In this case, Equation (9) may be written as

Le = L− FeLpF−1
e = trLe +

ctLe (12)

where trLe is the elastic rate with the plastic flow frozen (the concept of a partial derivative),
and ctLe is the elastic rate with the external power frozen. Then, as an alternative to
Equation (10), the following addition takes place in the same trial-frozen configuration:

− ct L̃e =
ct Ḟe

ctF−1
e = ∑

g
γ̇gsg ⊗mg (13)

As a key difference, this poses an evolution on the elastic deformation gradient instead
of on the plastic one, facilitating by construction the weak-invariance property.
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Figure 5. Comparison of the result obtained from two consecutive slips performed in different order.

3.2. Constitutive Models
3.2.1. Phenomenological Models

In crystal plasticity, the phenomenological models can be considered as the first
approach adapted from the framework of continuum mechanics, and are dominant in the
literature. This approach uses mostly the resolved shear stress (RSS) τg on a glide system g,
as material state variable. With S|e denoting the second Piola-Kirchhoff stress tensor in the
intermediate configuration, the RSS on glide system g, is typically defined as:

τg = FT
e FeS|e : (sg ⊗mg) (14)

where FT
e FeS|e is the non-symmetric Mandel stress tensor. In the case of infinitesimal elastic

strains which typically hold in crystal plasticity, Equation (14) can be approximated as:

τg ≈ S|e : (sg ⊗mg) (15)

An alternative is to use the recent formulation based of elastic corrector rates, which do
not involve the Mandel stress tensor, but the symmetric generalized Kirchhoff one [75,79–81].
This formulation has general validity (not only for infinitesimal elastic strains). In general,
the stress is defined as the derivative of the stored energy respect any convenient strain
measure, for example, the logarithmic (Hencky) elastic strains He := 1

2 log(FT
e Fe) in the

intermediate configuration, namely

T |e :=
dΨ(He)

dHe
such that D = − Ψ̇

∣∣
Ḟ=0 = −T |e : ctḢe (16)

where D is the plastic dissipation and ctḢe is the corrector rate of Ḣe (the one with the
external power frozen). Plastic slip occurs in this glide system when τg reaches a critical
level τc

g (CRSS) that is typically considered as a function of the total accumulated plastic
slip γ =

∫
|γ̇|dt and its rate γ̇ = ∑

∣∣γ̇g
∣∣,
τc

g = f (γ, γ̇) (17)

This CRSS value can be interpreted as the hardened yield stress of the slip system.
In inviscid plasticity γ̇ > 0 just when

∣∣τg
∣∣ > τc

g . In rate dependent plasticity, the slip rate
in each glide system is then formulated as a function of the RSS τg and the CRSS τc

g (e.g.,
as their ratio),

γ̇g = f (τg, τc
g) (18)
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Much work was performed to establish the specific form of Equation (18), e.g., [5,54,55,82,83],
who have formulated a power-law function for slip rate as a common choice (other options
are possible):

γ̇g = γ̇0

(
|τg|
τc

g

)1/m

sign(τg) (19)

being γ̇0 and m material parameters that quantify the reference shear rate and the rate
sensitivity of the slip mechanism, respectively. τc

g is also referred to as strength or hardness
of the slip system. In the above equation γ̇g can take both signs, while in the original work
of Pierce et al. [82] the positive and negative slip directions are considered. The sensitiv-
ity exponent and the reference shear rate may include the influence of the temperature,
for example, as [84,85]

m =
kT

τf µb2d
and γ̇0 = ρmb2 fD exp

(
−∆G

kT

)
(20)

where k is the Boltzmann constant, T the absolute temperature, µ the shear modulus, τf
is the average strength of the forest, d is the distance to overcome an obstacle, ρm is the
density of the mobile dislocations (see below), ∆G is the stored Gibbs free energy when a
dislocation bypasses an obstacle, and fD is the Debye characteristic frequency of the crystal,
given by

fD =

(
3N

4πV

) 1
3
vs (21)

where N/V is the number of atoms per volume and vs is the speed of sound. Typical
values are [85] d ∼ 4b, ∆G ∼ µb3/5, m ∼ 0.005, γ̇0 ∼ 10−16 ÷ 10−6 [s−1].

For the hardening evolution of the CRSS τc
g in each glide system, a hardening law is

typically defined. A formulation proposed by Peirce et al. [82] for isotropic type hardening
is often used. It includes the explicit contributions of the occurring slip in the same
glide system (self-hardening) and of the cross-effect from slips on all other glide systems
(latent hardening):

τ̇c
g = ∑

j
hgj|γ̇j| (22)

Here hgj is a matrix of hardening coefficients, fitted/determined empirically to capture
the micro-mechanical interaction between the different slip systems [82]:

hgj = h(γ)[q + (1− q)δgj] (23)

The material parameter q differentiates latent hardening and self hardening of the
glide systems; typically in an interval [1, 1.4]. For FCC single crystals, a typical choice for
the hardening function h(γ) is [82]:

h(γ) = h0 sech2
(

h0γ

τs − τ0

)
(24)

being h0 the initial hardening rate. τ0 and τs denote initial and saturation values for
the CRSS.

We note that Equations (19), (22) and (24) are not the only ones proposed in the
literature. Some researchers [86–91] modify Equation (19) to take into account the cyclic
deformation by introducing a phenomenological backstress term to formulate the kinematic
hardening. Other authors [92,93] use classical hardening laws from continuum plasticity
such as Voce’s hardening law to avoid vanishing hardening rates though the introduction
of a limiting slope.
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3.2.2. Physics-Based Models

In contrast to the phenomenological models, the physics-based ones use physical (or
physically motivated) measures, as well as principles and important physical insight from
microstructure information and its evolution. Examples of that information are dislocation
density, precipitate morphology, grain size and shape, etc. Nevertheless, only a few of
these aspects have been introduced into physics-based models. In following subsections,
we present more in detail some predominant models.

(a) Dislocation density-based models

There are 106 to 1012 dislocations in every cm2 of material. The amount is variable
and strongly depends on the processing history, in particular deformation and thermal
treatments, possibly on microstructure [27,94]. Whereas dislocations are mostly responsible
for plastic deformation, crystal plasticity models are usually developed at a different
scale. Then, the different scales are considered throughout the formulations in terms of
statistically stored dislocation (SSD) densities in the crystal plasticity models. At a given
time, there are two types of SSD: mobile (glissile) and immobile (sessile), with respective
densities ρm

g and ρim
g ; in total ρg = ρm

g + ρim
g . These densities represent the equivalent length

of dislocations (Burgers vectors) along a direction per unit volume, e.g., with units [m/m3]
= [m−2]. Mobile dislocations are the ones producing effective slips, but during deformation
a change of status of dislocations is possible [95,96] which means a transfer between ρm

g

and ρim
g . This decomposition has been proposed to develop a different treatment needed

for both components, because mobile dislocations are the source of plastic deformation
and ductility; whereas immobile dislocations block motion, strengthening or hardening the
material. The laws of evolution for mobile dislocations require a coupling with the ones for
immobile dislocations. The evolution laws for dislocation density is typically based in the
following Kocks-Mecking model [95,97,98]:

ρ̇g =
1
bg

[
1

l(ρg)
− 2γcρg

]
|γ̇g| (25)

This law includes both storage and recovery effects (in a similar layout to the Armstrong-
Frederick rule in hardening) that determine the variation of the dislocation density with
plastic deformation. The first addend in the brackets accounts for the storage of dislocations
1/(bgl(ρg)); the dynamic recovery by the term 2γcρg is associated with the annihilation
of stored dislocations. The function l(ρg) is interpreted as immobilization of mobile dis-
locations at obstacles after having travelled a characteristic (statistical average) distance.
bg is the Burgers vector modulus of slip system g. The term γc is the critical annihilation
distance. Some modifications of Equation (25) are possible; refer, for example, to [99,100].

Further evolution laws for metals of different crystal structures is proposed in [101]
and enhanced by subsequent works [102–105]. An example is the following which is a
linear superposition of various mobile and immobile mechanisms:

ρ̇m
g =

[
hs

g(ρ
im
g ρm

g )
−1 − hm0

g ρm
g − him0

g

√
ρim

g

]
|γ̇g| (26)

ρ̇im
g =

hm1
g ρm

g − him1
g

√
ρim

g − hr
gρim

g exp

∆G
kT

1−

√√√√ ρim
g

ρim
sat



|γ̇g| (27)

where ρim
sat is an experimentally determined saturation for immobile dislocation densities,

The coefficients hs
g, hm0

g , him0
G , hm1

g , him1
g and hr

g depend on the degree of activity of the
specific dislocation mechanisms g.

Regarding the evolution of the slip rate, in dislocation-based models the equation
proposed by Orowan [106] is typically used instead of Equation (19) as it establishes
the connection between the plastic slip rate on a given glide system γ̇g and the mobile
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dislocation density, i.e., it creates a bridge to convert a continuum mechanical term into the
physics of dislocations:

γ̇g = ρm
g bgvg (28)

where ρm
g is the mobile dislocation density, bg is the Burgers vector modulus of g and vg

is the average velocity of mobile dislocations that depends on the details of the evolving
dislocation mechanism. During slip, depending on whether thermal activation can con-
tribute to get over the obstacle, the barriers to dislocation movement can be referred to as
temperature-dependent or independent.

Therefore, the average dislocation velocity is also temperature-dependent [38,68,99,107–109].
Generally, the average dislocation velocity vg can be expressed by the typical thermodynamic
relation [110]:

vg =


0 if 0 ≤ |τg| ≤ τc

g

λg fD exp
(
−∆G

kT

)
if τc

g < |τg|
(29)

where λg is the average distance between the obstacles in the glide system g (compare with
Equations (19) and (20)). During slip, due to the crystalline structure, there is a local stress
field associated to the distortion around each dislocation core. The Gibbs free energy in
presence of a general array of obstacles in the slip plane can be formulated as [107]

∆G = ∆F

[
1−

〈
|τg| − τc

g

τt

〉p]q

(30)

being ∆F the activation free energy necessary to overcome the obstacles without the aid of
an applied shear stress, τt the strength of the barrier at 0 K, p and q the parameters that are
function of distance propagated by the dislocation, and < · > is the Macaulay brackets.

Furthermore, it is well known that a crystal always contains a number of immobile
dislocations, so if a mobile dislocation keeps moving, it interacts with those immobile
dislocations and also with the local stress fields around those.

Immobile dislocations therefore represent obstacles to mobile dislocations, and their
density is a key factor determining the threshold plastic stress (CRSS, τc

g) required for
dislocation motion within a glide system. In addition, the value of τc

g also depends on a
variety of factors such as: point defects, crystal structure, temperature, and other internal
variables [27]. Taylor [111] determined this threshold stress for a single slip to occur:

τc
g = µbg

√
ρim

g (31)

where µ is the shear modulus. For several slip interactions and to include the influence of
the temperature, Elkhodary et al. [112] proposed a modification of Equation (31):

τc
g =

(
τ0

g + µ
nss

∑
i=1

bg

√
agiρ

im
i

)(
T
T0

)−ξ

(32)

being τ0
g the initial slip resistance on glide system g, nss the number of slip systems and agi

the Taylor coefficient that represents the strength of interaction between glide systems. T, T0
are the current and reference temperature, respectively. ξ is the thermal softening exponent.

(b) Geometrically necessary dislocations (GND) models

One of the best known frameworks in crystal plasticity for FE analysis is the one from
Kalidindi, Bronkhorst and Anand [39]. Here, the constitutive laws can be totally expressed
from the loading history at a stress integration point and are defined as local models. How-
ever, experiments show that the mechanical behavior of single crystals is size-dependent
and the classical continuum models of plasticity cannot reproduce the details of the be-
haviour of the material at such small scales, important in nanoindentation [113–117], bend-
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ing tests for small-scale beam [118–123] and micropillar compression [124]. Hall [31] and
Petch [32] introduced the grain size dependence of the flow stress through an empirical re-
lation. Basically, smaller grains result in larger yield stresses. Thereafter, numerous studies
have demonstrated that this strengthening effect is due to the fact that in the surroundings
of the grain boundaries there is a higher volume fraction of heterogeneous plastic deforma-
tion [62,125–127], hence more apparent in smaller grains. Typically, the nonhomogeneuos
plastic deformation takes place and it may affect strain gradients and orientation near
the boundary. These gradients are associated to the geometrically necessary dislocations
(GNDs) [125]. The GND concept appears in nonhomogeneous deformations and is incor-
porated in the constitutive framework by Nye’s dislocation density tensor explained above,
see Equation (5). For a given slip system g, given that the Schmid dyad remains constant in
the intermediate configuration, we have for that system ḞT = FT

p LT
p = γ̇gFT

p ·mg ⊗ sg and

α̇ = −1
b
(∇X × ḞT

p )
T = −1

b
∇X × (γ̇gFT

p ·mg ⊗ sg)
T = −sg ⊗

[
1
b
∇X × (γ̇gFT

p ·mg)

]
︸ ︷︷ ︸

ρ̇GND
g

=: −sg ⊗ ρ̇GND
g (33)

where ρGND
g is the vector of geometrically necessary dislocations for slip system g, propor-

tional to the Burgers vector. This vector can be decomposed in screw and edge dislocations.
The screw dislocation is in the direction of the slip direction, whereas the edge dislocations
may be decomposed in the direction perpendicular to the slip plane mg and in the direction
in that plane which is perpendicular to the slip direction, i.e., in direction tg := mg × sg.
These density rates are

ρ̇GND
gs = ρ̇GND

g · sg and ρ̇GND
gm = ρ̇GND

g ·mg and ρ̇GND
gt = ρ̇GND

g · tg (34)

which can also be written as [73,128]:

ρ̇GND
gmt =

1
b
∇γ̇g · sg (edge); ρ̇GND

gs =
1
b
∇γ̇g · (sg ×mg) (screw); (35)

The integration of GNDs into the constitutive model can be introduced by different
ways in crystal plasticity. In some models, GNDs are added to the statistically stored dislo-
cations (SSDs) and also contribute to hardening by the Taylor hardening relation [129,130].
In the case that the density of GNDs in each system is explicitly resolved, the critical
resolved shear stress τg can be formulated as [131]:

τg = µb
√

∑
g
(aSSD

kg ρSSD
g + aGND

kg ρGND
g ) (36)

where ρSSD
g is the SSDs density in system g; aSSD

kg and aGND
kg are coefficients that define the

latent hardening interactions among the different glide systems. To obtain the evolution of
GNDs, it is necessary to determine the Nye tensor or the slip rate at the integration point
level. This task is typically done through an extrapolation of the internal variables from the
integration points to nodes in each element [132,133], or alternatively by computing the
gradients based on recovery techniques [134]. Another approach to include GNDs in high
order models. The most popular model of this type was proposed in the works [65,72,135],
and thereafter extended in many works [67,136–141]. Here, the plastic slip in each system
γg is treated as a kinematic variable in the constitutive model. Another tensorial quantity
defined as geometric-dislocation tensor G is proposed to measure GNDs and can be
expressed in terms of pure dislocations.

G = b
K

∑
κ

ρklκ ⊗ sκ (37)

Here ρκ is a signed density and lκ ⊗ sκ is a dislocation dyad, where lκ is the line
direction (either sk or mk × sk). The relevant aspect in the model is that it focuses on
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the work for each independent kinematic process that is energy-balanced, and therefore,
micro-forces conjugated with slip and its gradient are properly considered in the principle
of virtual power. Moreover, for constitutive dependencies on the geometric dislocation
tensor, G is decomposed in a typical elastic-strain energy and a specific so-called defect
energy ΨG. A simple defect energy is defined in a quadratic form of the type [65]:

ΨG = 1
2 λ|G|2 (38)

where λ is a scalar material parameter. The micro-force τg gives the following viscoplastic
yield conditions (Equation (7.19)) [65]:

τg = H(γg)σg︸ ︷︷ ︸
Phenom. slip hardening

+ J−1Sg · (T|GGT + T|G TG)−∇ · [J−1Fe(mg × TGsg)]︸ ︷︷ ︸
+ additional hardening due to the energy stored by the GNDs

(39)

where H(γg) is a function characterizing rate-dependence, σg a slip resistance, Sg =

sg ⊗mg is the Schmid tensor, T|G = ∂ΨG/∂G is defined as the thermodynamic defect
stress. In Equation (39), there are two different hardening mechanisms. The first addend
is purely phenomenological without backstress effects, whereas the second one is purely
energetic from restrictions imposed by the thermodynamical framework, and furthermore,
it represents a backstress on the slip system g.

(c) Continuum Dislocation Dynamic Models

The GND models presented above are in general based on the Kröner-Nye dislocation
density tensor that can be used for modelling size effects. However, those models present a
fundamental weakness when only GNDs are considered: after averaging, the dislocation
density quantities only account for the GNDs, while all moving dislocations (redundant
and macroscopically cancelling SSDs) must be taken into account. In this sense, GND
models typically need some phenomenological assumptions in order to account for the
contribution of the geometrically redundant dislocations for the deformation process.
Such GND models only can provide a closed and kinematically consistent description of
the dislocation dynamics if all dislocations share the same line direction [142]. In order
to overcome this weakness, recent density-based theories of dislocation dynamics are
developed by different researchers [142–150] which contribute to a new family of physics-
based plasticity model named continuum dislocation dynamics (CDD).

Here, as an example of such theories, we focus on the more recent CDD model
introduced by Hochrainer [142,147,148,150]. This model is based on the description of
connected dislocation lines by a generalized dislocation density tensor, i.e., modifies the
definition of the dislocation density tensor. As mentioned above, models based on the
Kröner-Nye tensor normally average over the line directions of all dislocations contained
in a volume element. However, in the CDD models the dislocation density tensor can
distinguish a priori dislocations by their line direction before any averaging is introduced,
which permits the description of the kinematics of very general systems of dislocations.
The modification of the dislocation density tensor can be achieved by defining it in a
higher-order configuration space [142,147,148,150]. For the configuration space R×R× S
(where S is the orientation space [0, 2π]), the modified dislocation density tensor takes
the form

αI I
(r,φ) = ρ(r,φ)L(r,φ) ⊗ b (40)

where (r, φ) defines a point in R× R× S, ρ(r,φ) is the scalar dislocation density at this
point (r, φ), b is the Burgers vector, and L(r,φ) defines the generalized line direction in
the higher-order configuration space that depends on the canonical spatial line direction
l(φ) = (cos φ, sin φ) and the curvature k(r,φ). The evolution of this tensor can be obtained
by the following relation [142,147,148]

∂tα
I I
(r,φ) = −(V(r,φ) × αI I

(r,φ))×∇ (41)
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being V(r,φ) the vector of the generalized velocity in R×R× S, that is perpendicular to
the generalized line direction. By ∂t(•) we mean partial derivative of (•) respect to t. This
generalized velocity consists of spatial component v = v(r, φ)ν(φ), where v(r, φ) is the
scalar velocity of dislocation segments at point (r, φ) and ν(φ) = (sin φ, cos φ), and an
angular component θ((r, φ)) that indicates the rotation velocity of these segments. The dis-
location density ρ(r,φ) and the curvature k(r, φ) then can be formulated from Equation (41)
by assuming only glide dislocation movements [147]

∂tρ = −(∇ · (ρv) + ∂φ(ρθ)) + ρvk (42)

∂tk = −vk2 +∇L(θ)−∇V (k) (43)

This approach allows to address physically relevant microplasticity problems with
simple deformation geometries [142,147,148], however the main problem found with this
approach is the large computational cost, since there is a large number of degrees of
freedom required for conducting simulations in a higher dimensional state space. In order
to reduce the dimensionality, a Fourier expansion can be used for the dislocation density
and curvature functions, and the expansion coefficients then are used as variables of a
simplified CDD model [148]. The total dislocation density ρt is defined as the zeroth-order
expansion coefficient of the dislocation density function ρ(r,φ),

ρt
r =

2π∫
0

ρ(r,φ)dφ (44)

The total geometrically necessary dislocation density is defined as ρG =
√
(κ1)2 + (κ2)2,

where κ1 and κ2 are the first order terms of the Fourier expansion of ρ(r,φ) in the material
point (r, φ), which are the components of the dislocation density vector κ(r) = (κ1, κ2, 0),

κ1 =

2π∫
0

ρ(r,φ) cos φdφ, κ2 =

2π∫
0

ρ(r,φ) sin φdφ (45)

From κ(r), the classical Kröner-Nye tensor is recovered as α = κ(r) ⊗ b. Under the
assumption that the scalar dislocation velocity and curvature fields are independent of the
line orientation, the evolution laws for the total dislocation density ρt and the dislocation
density vector κ are given by

∂tρ
t = −∇ · (vκ⊥) + vρtk

∂tκ = −∇× (ρtvm)
(46)

where κ⊥ = (κ2,−κ1, 0), m is the glide plane normal, and k is the average curvature. A phe-
nomenological evolution equation is normally adapted for the average curvature [148].

3.3. Numerical Implementation Aspects

The finite element method (FEM) is the widely preferred method for computational
simulation of solids, and that includes crystal plasticity. Finite element programs typically
have a driver subroutine for material models, and commercial ones allow users to imple-
ment their own material models via user subroutines. In a typical analysis, the load is
applied incrementally in “time” steps, and at each time increment the global equilibrium
of the structure is reached by means of an iterative process using a global nonlinear solver
(typically based on global Newton-Raphson methods). Once the problem is solved at
time t, the crystal model must provide two important quantities at each material point for
the solution for the next time increment: (i) the stress at time t + ∆t and (ii) the tangent
moduli tensor C = dS/dE also at time t + ∆t (S is the second Piola-Kirchhoff stress ten-
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sor and E = 1
2 (FT F − I) is now the Green-Lagrange strain tensor, both in the reference,

undeformed configuration).

3.3.1. Integration Algorithm

Usually, an elastic-predictor/plastic-corrector algorithm is used for the integration
of the constitutive equation. In principle, all data at previous time t is known and the
strain increments at time t + ∆t are given by the element subroutine calling the material
one, so one can start “elastically”-predicting any of the involved quantities. Subsequently,
the prediction is corrected by solving the nonlinear equations in residual form, typically
using a Newton-Raphson scheme. The second Piola-Kirchhoff stress S [39], the slip rate
γ̇g [82], the elastic deformation gradient Fe [151], the plastic deformation gradient Fp [152]
or the plastic velocity gradient Lp [153] are suggested as starting point in the numerical
implementation. An example of elastic predictor/return-mapping algorithm for single
crystal models is summarized in Algorithm 1. In the case of viscous-type rate constitutive
equations, since no yield function is employed, no check for plastic slip is needed (there is
always a plastic slip, even if it is very small). However, convergence problems are common
if the rate sensitivity parameter m (see Equation (19)) is too small (as to approach the
rate-independent solution), so it is common to increase this parameter artificially just to
overcome these numerical problems. On the other hand, in the rate-independent case,
non-uniqueness of solution issues may arise (the final stress is unique, but not the active
set of slip systems).

Algorithm 1 Typical structure of an elastic-predictor/plastic-corrector return-mapping
algorithm

Require: Given the state variables at time t and the total strain at time t + ∆t.

1: Elastic predictor: evaluate the trial state
trFe =

t+∆t
0F · t

0
F−1

p ;
tr

S|e = ∂Ψ/∂trEe; trτg = trFT
e

trFe
tr

S|e : (sg ⊗mg); trγ = tγ

2: Plastic slip check
IF trτg ≤ τc

g(
trγ) THEN

Elastic step: set t+∆t(•) = tr(•) and EXIT
ELSE

Plastic slip step: Proceed to step 3
ENDIF

3: Return mapping
i. Use the standard or exponential backward-Euler for integration of evolution

equation
ii. Local Newton iterations: plastic corrector

Solve iteratively the residues of the variables used in prediction
t+∆tR = 0
using the Newton-Raphson method

iii. Update the state variables. Compute the elastoplastic tangent matrix during this
phase.

4: EXIT

By using the Newton-Raphson method to obtain the solution, it is necessary to com-
pute the local Jacobian matrix and its inverse. The dimension of this matrix is equal to the
dimension of the residues vector, i.e the number of independent variables (and equations)
that is used as predictor, for example, six variables for S, eight for Fp, etc. This dimension
can be a relevant number if the slip rates are chosen (for example, 48× 48 for BCC crystals).
Taking into account that this system is solved several times until local convergence for
each global iteration and at each integration point, it requires some efforts in reducing
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the number of active slip systems [8], because this task may be the most computational
demanding in solving the structure.

3.3.2. Type of Elements

In most crystal plasticity simulations, tri-linear elements are used, because they are
easily generated and are inexpensive from a material standpoint (typically 2 × 2 × 2
integration points are employed. However, these elements can not describe strain gradients
within one element due to the fact that this type of elements use linear interpolation
functions for the displacements. Furthermore, if they employ standard formulation, they
are well-known to lock for the incompressible case typical in plasticity. Linear elements
are especially not sufficient to capture accurately strong strain gradients. Higher-order
elements should be used in such cases with either reduced integration or a formulation to
alleviate locking. Typical elements include mixed u/p formulations, incompatible models
formulations, or reduced integration. Details on these formulations can be found in [2].

In cases with GNDs-based models, the situation becomes more complicated when
those models include strain gradients. The formulations for standard elements are only con-
tinuous in the displacements (C0-continuity) and gradients are often undefined. Enhanced
element formulations have been proposed to be used to overcome this problem [67,154].
However, in the case of complex loadings the complexity in defining boundary conditions
increases for such element formulations. Furthermore, these element formulations are com-
putationally very costly, and lack of robustness at large strains, so they are often applied to
two dimensional problems at small strains. Therefore, the standard elements are still used
and the necessary strain gradients are derived based on recovery techniques [134].

4. Searching the Active Set of Slip Systems

The question whether a specific slip system is activated is decided by a yield criterion
mathematically expressed in terms of one inequality per slip system. It essentially states
that plastic slip occurs if the RSS reaches the CRSS subject to the additional constraint that
only slip rates in the positive and negative direction of the RSS are permitted. The overall
constitutive material response can be determined once the set of active slip systems is
known. However, it is not possible, in general, to know which systems will be active for
the final converged deformation. Noteworthy, for multisurface plasticity models such as
the Tresca and Mohr-Coulomb models there are robust algorithms to search the active
set of yield surfaces. Those algorithms have been formulated based on the geometric
representation in the principal stress space. Nonetheless, in the present crystal plasticity
case, its application is more complex because the set of active slip systems that satisfies
the discrete plastic consistency may not be unique and many combinations of plastic
multipliers may exits for a given set of active slip systems, which provide the same
incremental plastic deformation gradient [5,155]. If the set of Schmid tensors Sg = sg ⊗mg
is linearly dependent in the space of deviatoric tensors, non-uniqueness in the solution
is possible. In 3D there are 8 linearly independent tensors that generate the deviatoric
tensors space. If it happens that the total number of active slip systems is larger than eight,
then the Jacobian matrix of the return-mapping system of equations becomes singular.
Therefore, an additional condition has to be formulated to be able to select the set of active
slip systems which appears in reality. Typically a Moore-Penrose (minimum norm) solution
is chosen, although other options are possible [156].

4.1. Rate-Dependent Approach

One of the preferred solutions to overcome the problems related to non-uniqueness
are viscoplastic (rate-dependent) formulations. These have been introduced firstly in the
works [82,83,157], in which the slip rate is given employing a typical power law function as
shown in Equation (19). This approach is then popularly used not only in continuum crystal
plasticity models [86–91,93] but also in the homogenization of polycrystals [158–164] or in
multiscale modelling of polycrystals [165–168]. As highlighted by [82], this rate-dependent
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model allows a more accurate large strain formulation for polycrystals. In particular,
it can obtain a good prediction of texture and specially obtain its dependence on both
strain-hardening/latent-hardening and strain rate sensitivity. But much of the choice of the
rate-dependent formulation is to avoid the non-uniqueness problem of rate-independent
models, a formulation which can be recovered by using reasonably low values for the rate-
sensitivity constant (i.e., a high exponent 1/m in the slip law of Equation (19)). However,
in this case, the resulting set of equations that are integrated can become extremely stiff as
the rate-sensitivity constant reaches a very small value, so a robust formulation for those
cases is not simple. These issues have been addressed and tackled in the work of Cuitiño
and Ortiz [8].

4.2. Rate-Independent Approach

Borja and Wren [155] proposed a completely different approach. Restricted to the
infinitesimal theory, a fairly robust algorithm (the ultimate algorithm) for the selection of the
active slip systems was developed within the stress-update procedure for rate-independent
single crystal models. The basic idea for determining the set of active slip systems is
to start the application of the predictor/return-mapping scheme with some trial set of
active slip systems, and then, to generate a sequence of sets of active slip systems as the
Newton-Raphson iterations for obtaining the solution are applied. At the end of this root-
finding process, the algorithm will converge to a state when the discrete complementary
condition is satisfied. The set of active slip systems is the converged set and is unique.
Furthermore, to avoid the possibility that the Jacobian matrix can be singular, Borja and
Wren proposed the triangular factorization of the Jacobian matrix after the redundant
equations are eliminated. This algorithm has been extended recently for the finite strain
framework by Borja and Rahmani [169]. Miehe also used this algorithm in the finite strain
context [156,170], but introducing the concept of exponential map integrators of [171] into
the field of single crystal simulation.

5. Examples of Applications
5.1. Engineering Forming Problems

The above formulations have been employed in a wide number of problems where,
for example, texture and its evolution may be important. These have been compared to
experimental data and to continuum models to show comparatively enhanced predictions.
A typical example is a cylindrical cup deep drawing adopted to investigate the texture
effects on the localization of the deformations and in earing [172]. In order to do it,
the texture components were incorporated into the crystal plasticity model by introducing
the measured orientation distribution function (ODF) at each integration point [173]. Three
typical crystal orientations {111}〈110〉, {113}〈110〉 and {001}〈110〉 were selected from the
dominant textures in three steel sheets (mild steel Deep-Drawing Quality DDQ dual-phase
steel—DP600Ze and high-strength steel CP800). The results obtained from simulations are
compared to experimental results. Figure 6 shows the computed results compared with
one obtained in experiments for the high-strength steel (CP800) material. The predicted
and measured thickness strain distributions (very important in deep drawing), along the
rolling direction are similar (see Figure 6c). The thinning of the material appears at the
hemispherical bottom region, where a high strain localization can also be observed at the
bottom region. Figure 6a,b show the localized necking precluding fracture in numerical
and experimental results, respectively. The expected four ears at 45◦ to the rolling direction
are observed. With the fitted simplified texture, the texture component-based crystal model
give already results very close to the experimental ones, demonstrating the value of this
type of formulations. Furthermore, the results obtained in the study [172] also confirmed
that the more the γ fiber texture components, the better is the drawability of bcc steel sheet.
The γ fiber also gives rise to four ears at 0 and 90◦ to rolling direction.



Crystals 2021, 11, 42 19 of 29

Figure 6. Comparison of the cup drawing between numerical simulation and experiment for CP800
material: (a) predicted thickness strain distribution and earing at punch travel 10 mm; (b) pho-
tographs of experiment specimen; (c) thickness strain distribution along the rolling direction. Repro-
duced from [172], under permission.

The same simulation benchmark was also employed in [174] but using a new concept
for representing textures by mapping small sets of mathematically compact spherical
Gaussian texture components on the integration points [175–177]. Figure 7 shows the
comparison between the computed and experimental results for cube-textured aluminium
sheet after cup drawing. In Figure 7a, the result obtained using the texture component-
based crystal model is compared with the experiment and also with continuum-based
elastoplasticity obtained by use of a Hill-48 yield surface. Two texture components and a
random scattering background component are used for fitting the texture component. These
results show a better fit of the texture component-based crystal model than that obtained
with the classical Hill-based model. Figure 7b,c show simulation results for different
approximations using a volume fraction and using two rolling texture components with a
random texture component.

Using the elasto-plastic self-consistent homogenization scheme in the finite element
framework, Zecevic and Knezevic [178] explored its potential in simulation and prediction
of springback of cup drawing from an AA6022-T4 sheet, see Figure 8; only a quarter is mod-
elled due to symmetries. The springback is obtained by eliminating the contact between
the blank and other parts when the punch reaches a travel distance of 12 mm. The von
Mises stress contours at the end of drawing and springback are shown in Figure 8a,b, while
the dimensional changes are depicted in Figure 8c,d.
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Figure 7. Experimental and simulation results of earing profile after cup drawing for aluminium
sheet: (a) comparison of results between the texture component-based crystal model and Hill 48
yield surface model and experiment; (b) simulation and experimental results in which the texture
is approximated using the volume fraction; (c) simulation and experimental results in which the
texture is approximated using two rolling texture components and a random texture component.
Reproduced from [174], under permission.

Figure 8. Cup drawing and springback simulation of AA6022-T4 sheet: (a) von Mises stress contours at the end of forming;
(b) von Mises stress contours after springback relaxation; (c) shape change after springback of y-z profile; (d) shape change
after springback of the circumference of the down cup flange. Reproduced from [178], under permission.
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5.2. Virtual Material Testing
5.2.1. Texture Evolution

Obviously one of the simulations that can be performed with crystal plasticity models
is the analysis of texture evolution and, hence, the evolution of anisotropy. In Figure 9 we
show the texture evolution in a copper polycrystal cubic specimen in a tensile test, see full
details about the constitutive equations (similar to the avove-presented phenomenological
ones) and the material parameters employed in the simulation in [75]. For this simulation
we used 512 elements with an initial random texture with 50 orientations. In the same
figure, the initial mesh and the deformed mesh is shown. In the middle and lower rows of
the figure, the pole figures showing the evolution of texture for directions (111) (middle
row) and (100) (lower row) are shown. This evolution has been computed in Figure 9 using
both the classical Kalidindi et al. framework and the novel framework employing elastic
corrector rates, being the results very similar for this case (see again details in [75]).
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Figure 9. Evolution of texture in copper under a tensile test. Upper row contains the initial and final mesh, where colors
correspond to different orientation. Middle row is shows the texture pole plots evolution for direction (111) and the lower
row for direction (100). Adapted from [75], under permission. A Matlab toolbox for pole figures, and documentation, is
available in https://mtex-toolbox.github.io/.

https://mtex-toolbox.github.io/


Crystals 2021, 11, 42 22 of 29

5.2.2. Impact Test

Taylor impact tests were originally devised to obtain the dynamic yield strength of a
material at moderate strain rates, but now such tests are used frequently to validate the
constitutive model for the simulation of plastic deformation. Figure 10a shows simulations
of Ta cylinder by using the viscoplastic self-consistent (VPSC) model in the finite element
framework. The simulation was performed by [179] and compared with the experimental
results reported in [180,181]. Figure 10a shows the equivalent plastic strain rate contours
that develop in the cylinder during the simulation. It can be seen that the dramatic change
in the strain rate is observed over the course of simulation. At the beginning of the impact,
the highest equivalent plastic strain rate develops at the center of the foot of the cylinder.
As the impact progresses, the high strain rate zone moves away from the foot to the other
side of the cylinder as a consequence of the plastic wave propagation. The side profile and
footprint obtained in the simulation after the impact are compared with the experimental
ones and depicted in Figure 10b. The highly heterogeneous plastic deformation is observed
at the center of the foot. The deformation in lateral directions is non-uniform as shown in
the ellipsoidal shape of the footprint.

Figure 10. Simulation results of Taylor impact test for Ta cylinder: (a) equivalent plastic strain rate contour at different time
step; (b) comparison of the measured and simulated cylinder geometry after the impact with the superimposed contours of
equivalent plastic strain. Reproduced from [179], under permission.

5.2.3. Rolling Test

Using the multiscale framework, a typical rolling test is normally carried out to ex-
plore the mechanical behavior of polycrystals subjected to non-homogeneous stress states
and examine heterogeneous texture development through the thickness of the sample
during the process [165,182]. The rolling simulation that has been done in [182] is here
recalled. The material of rolling plate is uranium α-U (see [182] for detailed mechanical and
texture properties). The initial texture was represented using 1600 individual orientations.
Each orientation was assigned to two elements and distributed over their eight integration
points. The sample was rolled between two cylinders leading to 60% reduction in thickness
during five steps. The geometry of the rolled plate at each step is depicted in Figure 11a,
together with the corresponding contour of the equivalent plastic strain. Due to the highly
anisotropic nature of the uranium α-U, the strain is developed heterogeneously through
the thickness. Similarly the heterogeneous texture that can be appreciated in Figure 11b.



Crystals 2021, 11, 42 23 of 29

According to [182], the determination of the texture gradients can help with understanding
recrystallization kinetics and the final recrystallized microstruture. Consequently, the tex-
ture gradients can affect recrystallization by altering crystallographic orientation, grain
boundary and dislocation densities.

Figure 11. Simulation results of rolling test for the uranium α-U: (a) equivalent plastic strain contours at different step; (b)
comparison between measured and predicted evolution at a polycrystalline material point near the bottom surface of the
plate. Reproduced from [182], under permission.

6. Conclusions

In the 21th century, computational crystal plasticity modelling has achieved a high
degree of maturity. Thanks to the current computational power and to the algorithms
with increased efficiency as multiscale ones based on the FFT, it is becoming an alternative
to classical continuum plasticity for engineering problems. Crystal plasticity simulations
allow for incorporating many ingredients of the structure of the material as grain size,
dislocations, texture, etc. In this paper we have made an overview of different aspects of
the present techniques employed in computational finite element simulations of crystal
plasticity, as well as some applications of such simulations.
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