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Abstract: Shape memory polymers (SMPs) are materials capable of changing their structural con-
figuration from a fixed shape to a temporary shape, and vice versa when subjected to a thermal
stimulus. The present work has investigated the 3D printing process of a shape memory polymer
(SMP)-based polyurethane using a material extrusion technology. Here, SMP pellets were fed into a
printing unit, and actuating coupons were manufactured. In contrast to the conventional film-casting
manufacturing processes of SMPs, the use of 3D printing allows the production of complex parts
for smart electronics and morphing structures. In the present work, the memory performance of the
actuating structure was investigated, and their fundamental recovery and mechanical properties
were characterized. The preliminary results show that the assembled structures were able to recover
their original conformation following a thermal input. The printed parts were also stamped with
a QR code on the surface to include an unclonable pattern for addressing counterfeit features. The
stamped coupons were subjected to a deformation-recovery shape process, and it was observed that
the QR code was recognized after the parts returned to their original shape. The combination of shape
memory effect with authentication features allows for a new dimension of counterfeit thwarting. The
3D-printed SMP parts in this work were also combined with shape memory alloys to create a smart
actuator to act as a two-way switch to control data collection of a microcontroller.

Keywords: 3D printing shape memory polymers; actuation; counterfeit resistance; morphing structures

1. Introduction

Additive manufacturing, commonly known as 3D printing, comprises many different
technologies and processes utilized to manufacture custom parts with a range of materials
such as metals, polymers, ceramics, and sand. While the original implementation of
additive manufacturing was to yield rapid prototyping parts, 3D printing is now being
used to manufacture parts for structural applications including maintenance and repair
of damaged structures [1]. Arguably, the most accessible form of 3D printing is the fused
filament fabrication (FFF) due to its low cost, suitability for use in an office environment,
and availability of a wide range of printing materials [2]. FFF additive manufacturing is a
type of material extrusion process in which a thermoplastic filament is heated to its melting
point and extruded onto a build platform, creating a layer-by-layer part. A recent extension
of this technology is the process of printing with raw pellets instead of a thermoplastic
filament. In this process, a polymer extruder is mounted to the printer and raw pellets
are fed, heated, and extruded from the print head [3,4]. This process allows for faster
printing, larger manufactured parts, and less thermal processing of the polymer in the
printed structures [4].

Combining additive manufacturing with smart materials is commonly referred to as
4D printing, introduced by Tibbits in 2013 [5]. Smart materials allow the manufacturing of
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parts that self-repair, generate a physical response, or create self-assembling structures [6].
4D printing combines the use of a 3D object with the fourth dimension, often having a
second geometry programmed into the part. When the object is subjected to heat [7,8],
a change in pH [9,10] water [11,12], magnetic field [13,14] or other external stimulus,
the object responds by changing its shape. Combining smart materials with additive
manufacturing allows for the production of complex, custom parts with tailored smart-
morphing properties.

One smart material of specific interest is the use of shape memory polymers in 3D
printing. Shape memory polymers (SMP/s) respond to a stimulus and can be deformed
and then return to a permanent or “programmed” shape [15]. Many shape memory
polymers are available that can be triggered with different stimuli; for this work, thermally
induced shape memory polymers will be considered. Thermally induced shape memory
polymers often utilize the glass transition temperature (Tg) of the material to switch
between a temporary deformed shape and the set-permanent shape. Above the Tg, the
polymer becomes soft and rubbery, allowing it to easily be deformed, and the deformed
shape can be solidified by allowing the part to cool below the Tg under deformation.
Thermally induced shape memory polymers consist of three distinct phases that allow for
the shape memory effect to be observed: The polymer, netpoint domains for the permanent
shape, and netpoint domains for the temporary shape [16]. Consequently, shape memory
polymers can be characterized based on these netpoints, which can be formed via chemical
crosslinking, hard domains associated with a melting temperature (thermoplastics), or
hard domains associated with a glass transition temperature (thermosets) [16].

Previous work in additively manufactured shape memory polymers has included
multiple technologies for polymer additive manufacturing including: Fused filament
fabrication [17–19], stereolithography [14,20,21], and digital light processing [22]. While
vat polymerization techniques such as stereolithography and digital light processing utilize
prepolymers in a liquid state and a light source to cure individual layers of a solid object,
fused filament fabrication turns polymer pellets into a cylindrical filament that is then
remelted and deposited in a layer-by-layer fashion to form a 3D object. Several works have
explored the use of FFF to produce smart materials [19,23].

Of the most relevance to this work is the 3D printing of shape memory polymers
based on polyurethane thermoplastics. Villacres et al. [19] processed polyurethane shape
memory pellets (SMP technologies) into a filament and fed this material into a FFF 3D
printer to study the mechanical properties. Similar techniques of first processing SMP
pellets into a filament, and then feeding the filament into a 3D printer have been examined
by other researchers [17,24]. While fabricating samples directly from a feedstock material
in pellet form has yet to be examined.

As mentioned, the fabrication of thermo-responsive smart materials has many appli-
cations. Of specific interest is the incorporation of thermo-responsive materials as actuators
in electronic circuits. Zarek et al. [14] examined shape memory polymers produced via
Stereolithography (SLA) printing to create a circuit illuminating a light. After the part
was manufactured, silver was deposited across the polymer to create electronic contacts,
and the SMP was subsequently deformed [14]. Upon heating, the SMP returned to its
initial state and the circuit was completed, illuminating the led. It is important to note
that this type of actuator must be manually reset upon each use. In else, the circuit would
turn on once a stimulus was applied but must be manually deformed to turn the stimulus
off. This is due to the typical one-way shape memory effect present on shape memory
polymers. Additional research has concentrated on investigating two or multiple shape
memory effects on SMPs [25–27].

This work focuses on combining the benefits of material extrusion through a direct
pellet extrusion process, with advanced materials, to produce smart 3D-printed parts,
exhibiting the shape memory effect. To circumvent the manual resetting of an SMP actuated
switch, this work solves this problem by preparation of a hybrid part containing both shape
memory alloy (SMA) and SMP for use in an electronic circuit. This creates a reversible
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actuated switch, capable of turning on and off with an external stimulus of heat. In
addition, all SMP parts fabricated in this work are created directly from the feedstock
material, without the need of first turning SMP pellets into a 3D printing filament. The
parts used for analysis and characterization, are 3D printed using the above-mentioned
technique of direct pellet extrusion.

2. Materials and Methods
2.1. Materials and Printing Process

In this work, shape memory polymer pellets (Diaplex 9020), designed for use in
injection molding applications, were purchased from SMP Technologies incorporated
(Tokyo, Japan) and the pellets were used as received, and fed directly into the printer.
From the supplier, Diaplex 9020 is a polyurethane-based shape memory polymer, with a
glass transition temperature of 90 ◦C, which can be utilized as the switching temperature
to trigger the shape memory effect [28]. The pellets were extruded using a universal
pellet extruder (Mahor XYZ), which was then mounted on an open source, fused filament
fabrication (FFF) printer (Makergear Beachwood, OH, USA) in place of the printer’s normal
extruder (Figure 1).
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Figure 1. Instrumentation and supplies used in this work. (a) Universal pellet extruder mounted on the open-source
Makergear M2 Printer. (b) Shape memory polymer (SMP) pellets used in this work (left) and 3D-printed SMP part (right).

Prior to manufacturing of 3D parts on the printer, the process was similar to that of
common FFF 3D printing. Solid models of the samples were rendered using the software
Fusion 360 (Autodesk Inc., San Rafael, CA, USA), or downloaded from the open-source
website Thingiverse (Makerbot Industries, Brooklyn, NY, USA). Once the stereolithography
(.stl) mesh files were prepared, they were then imported into the open-source software
Slic3r in order to generate .gcode files for the printer. Print settings, described below, were
selected and modified in Slic3r, and the .gcode file was then loaded to the printer.

The universal pellet extruder utilized a stepper motor to drive an auger that forced the
pellets (Figure 1b) through a 1.5 mm nozzle. The samples printed in this work (Figure 1b)
were printed at a speed of 5 mm/s, with a layer height of 0.9 mm. Additionally, the nozzle
temperature was set at 225 ◦C, and the bed was set at 80 ◦C, to assist with adhesion of the
print to the build surface.

All other components of the printer remained as built from the manufacturer. The
stepper motor for the pellet extruder was connected to the printer’s circuit board. Also,
the firmware was modified to provide the correct current to the motor, as it had different
requirements than the original extruder motor.
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2.2. Mechanical Testing

Mechanical tests were conducted to determine the properties of the printed parts. Four
tensile samples were tested based on the ASTM D638 (type IV) in an Instron 5967 unit with
a load cell of 10 kN. Samples were pulled at a rate of 2 mm/min, and the corresponding
stress and strain was collected by the instrument. Flexural testing (ASTM D790) was also
conducted, and six rectangular samples (100 × 10 × 4 mm) were printed for examination
under compression in a three-point bend flexural test. For both mechanical tests, an average
was collected from the samples and the standard deviation was determined.

2.3. Thermal Analysis

Differential scanning calorimetry (DSC) was utilized to examine the glass transition
temperature and thermal properties of the printed shape memory polymers. This test was
conducted using a PerkinElmer hyper-DSC (Waltham, MA, USA) in a range from 25 ◦C
to 230 ◦C. The printed and virgin pellet material samples (5–10 mg) were prepared in an
aluminum pan with a lid. The samples were heated and cooled at a rate of 10 ◦C/min
to 230 ◦C, and cooled to 25 ◦C, once to erase the thermal history of the material, and a
second time for measurement of the glass transition temperature. Here, the average of
three separate samples was used in reporting the Tg of the material. This temperature
range was selected based on the Tg stated by the manufacturer of the material (90 ◦C), and
up to a temperature of 230 ◦C to evaluate any thermal events that may occur during the
printing process of the samples.

2.4. Shape Memory Testing

To examine the thermo-responsive memory effect and determine the shape recov-
ery ratio of the 3D-printed shape memory polymers, the fold-deploy test developed
by Liu et al. [29] was utilized. This test quantifies the shape recovery angle of a de-
formed part after heating and has been used by several other researchers to characterize
the shape memory properties of SMPs [30–32]. In this test, a flat rectangular specimen
(80 mm × 11 mm × 4 mm) was bent into a “U” shape around a rod with a diameter of
8 mm (Figure 2). The manufactured shape is set as the reference angle (θmax = 180◦), and
then reheated above the Tg of the material in boiling water. After the shape has returned to
its recovered shape and subsequently cooled, the angle (θr) is recorded. The shape recovery
ratio is then calculated using the following formula:

Shape recovery ratio : %Rr =

(
1 − θmax − θr

θmax

)
× 100% (1)
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To determine the shape retention ratio of the manufactured samples, thermomechani-
cal shape recovery cycles were conducted using a TMA Q400 (TA instruments, New Castle,
DE, USA). In this test, a small sample of SMP (5 × 10 × 4 mm) was machined from a
printed SMP part. The TMA Q400 was operated with the provided macro-compression
probe (diameter = 6.07 mm). The steps for the thermal mechanical shape recovery followed
closely the procedure from other researchers [33–35]. The method of the thermomechanical
analysis consisted of equilibrating the sample at 110 ◦C for 5 min, ramping the applied
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force (0.5 N/min) to 0.9 N, and setting this deformation by cooling the sample to 25 ◦C at
3 ◦C/min. The recovery to the permanent shape is achieved by removing the applied force
to 0.001N (at 0.5 N/min), holding the sample at 25 ◦C for 5 min, and heating the sample
back to 110 ◦C at 10 ◦C/min and finally holding for 10 min.

The shape retention, or shape fixity ratio, Rf, as defined by Zhao et al. [7] can then be
calculated from Equation (2):

%R f =
εapplied

ε
× 100% (2)

where εapplied is the strain from the applied load of 0.9 N, and ε is the strain remaining in
the sample after the load is removed (to 0.001 N). This property demonstrates how capable
the shape memory polymer is of retaining the deformed state.

2.5. Authentication

The ability of incorporating a unique identifier into the manufactured parts was ex-
amined in this work, within the context of intentionally hiding a fingerprint using the
shape memory effect. Previous work by Pretsch et al. [36] has shown the application
of quick response (QR) codes printed on shape memory polymers. The combination of
the materials shape memory effect allows the QR code to be distorted and unscannable
when the part is deformed, and scannable once the part has returned to its original shape.
Challisery et al. [37] demonstrated this by 3D printing a QR code on a shape memory poly-
mer material. In this work, the applicability of this authentication technique is addressed on
the printed Diaplex 9020 SMP. The SMP coupon was placed in a Roland VeraUV substrate
printer (Irvine, CA, USA) to create the QR-code design onto the part. The Logojet deposited
a UV-curable ink onto the 3D part in a pre-generated design, which consisted of a working
QR code surrounded by unscannable QR-codes, to disguise the exact location. Lastly, the
QR Code was verified to work by scanning with a smartphone, before undergoing thermal
deformation and the shape memory return.

2.6. Actuation of a Microcontroller with a 3D Printed Smart Switch

To demonstrate potential applications of additively manufactured shape memory
polymers, a printed sample (28 × 5 × 1 mm) was combined with a shape memory alloy
(SMA) wire to act as a counter-balanced switch in a simple electric circuit (Figure 3). Here,
nickel-titanium wires (Dynalloy, Irvine, CA, USA), with a transition temperature of 90 ◦C,
were glued to the printed SMP part, and a piece of copper tape was affixed to allow current
to pass through the smart switch. The SMP/SMA hybrid part was then used as a thermal
switch in a circuit. Once heated, the SMA wire straightened out, causing the entire part to
straighten. Upon removal of the heat, the switch relaxed into a slightly curved geometry.
The smart sensory switch was here used to actuate a microcontroller. The microcontroller
was a Texas Instruments (Dallas, TX, USA) MSP430 G2553 (see Figure 3), and serial data
were collected through the MSP430 development board. The temperature sensor present in
the G2553 microcontroller was utilized to collect temperature data. Here, the entire board
and smart switch was set into a laboratory oven, when the switch reached the transition
temperature, the microcontroller was triggered to initiate temperature data collection.
When the smart switch returned to the “off” state, the process was stopped. Several pins of
the G2553 were required for the data transmission and the powering of the microcontroller.
One pin was set as an input and it was this pin that would trigger the collection of data
through an interrupt. The data were transferred from the G2553 through UART.

In this example of a smart switch to collect temperature data, all temperature informa-
tion above 90 ◦C were collected. The continuous collection of data by the MSP430 and smart
switch system was achieved at temperatures above 90 ◦C. As mentioned previously, the
system was placed in a laboratory oven (at room temperature) subjected to a temperature
ramp to 95 ◦C. After 5 min, the oven temperature was then increased to 105 ◦C and held
for an additional 5 min. The oven was then switched off, and cooled passively for 30 min,
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until the oven door was opened. Once opened, the system cooled rapidly, and the smart
switch then disconnected from the board, and data collection stopped.
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3. Results and Discussion
3.1. Mechanical Properties

The average tensile strength of the printed samples was 55.58 MPa, with a standard
deviation of 2.29 MPa. It should be noted that the manufacturer reported the tensile
strength of the material to be 48 MPa; however, measurements of higher ultimate ten-
sile strength (UTS) than that reported from the manufacturer has also been reported by
Villacres et al. [19] on an SMP material (MM4520). The samples prepared in this work were
printed with g-code settings for 100% infill. Given that the samples consist of longitudinal
layer lines and yielded higher UTS than the injection molded counterparts due to align-
ment of the polymeric chains, it is important to note that the layers of the tested samples
(Figure 4) were printed and tested in the longitudinal direction. Figure 3 shows a clear
necking on the samples following the tensile testing, a mechanism that suggests a certain
degree of ductility. Included in Figure 4 is the micrograph of the cross-sectional area of the
tested sample, where a limited level of porosity is observed, indicating a high degree of
densification during the printing process.

Examination of the flexural properties showed that the printed samples exhibit a
flexural stress of 73.4 MPa, with a standard deviation of 3.44. Here, it is important to
note the tested specimens did not fracture during the three-point bend test, instead they
remained intact. Once again, the examined flexural strength (73.4 MPa) is higher than the
manufacturer’s reported bending strength of 55 MPa.

3.2. Differential Scanning Calorimetry

Differential scanning calorimetry (DSC) exposed the transformation temperature of
the printed SMP Samples. The results from the DSC are shown in Figure 5, for both the
virgin pellet and unprinted material. From the second heating ramp, it was determined
that the glass transition temperature of the printed material occurred at 85.4 ◦C (±0.74 ◦C),
which is slightly lower than the reported from the manufacturer (90 ◦C). In the cooling
curve of the printed sample, the glass transition temperature was observed at 81.9 ◦C
(±1.15 ◦C). While this measured result is slightly lower than the manufacturer’s reported
data, it should be noted that the manufacturer reports the glass transition as an inflection
of the modulus of the material. Since the measured value by DSC and the reported value is
within 5 ◦C, this difference can be attributed to the difference in techniques of measuring
the glass transition temperature [38]. No additional peaks were present in the thermograms
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of the printed and virgin material, indicative of the amorphous nature of this polyurethane
shape memory polymer network.
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curve of the printed sample, the glass transition temperature was observed at 81.9 °C 

(±1.15 °C). While this measured result is slightly lower than the manufacturer’s reported 

data, it should be noted that the manufacturer reports the glass transition as an inflection 

of the modulus of the material. Since the measured value by DSC and the reported value 

is within 5°C, this difference can be attributed to the difference in techniques of measuring 

the glass transition temperature [38]. No additional peaks were present in the thermo-

grams of the printed and virgin material, indicative of the amorphous nature of this pol-

yurethane shape memory polymer network. 

Figure 4. Optical microscope images taken of (a) fracture area of tested tensile specimen; (b) magnified view of fractured
area; (c) cross-section of fractured area.

3.3. Shape Memory & Authentication

The shape memory effect was first tested in water at 95 ◦C. A rectangular bar was
3D printed and deformed by hand at elevated temperature. From the photos in Figure 6,
the recovery of the shape from a twisted shape to a flat bar is observed. Here, the twists
applied in the deformed shape are unraveled as the SMP recovers its permanent shape.
The recovered shape is achieved in under 25 s of free recovery in hot water.

The presence of the shape memory effect in the printed specimens was then employed
in the aforementioned authentication method. The inclusion of this counterfeit mechanism
is due to the increased need of finger printing features in smart microelectronics. In
this work, a simple QR code image has been incorporated into the printed SMP. Here,
the specimen was scanned with a smartphone revealing the disguised QR code. Next,
the sample was heated with a heat gun and deformed, resulting in the QR code being
undetectable. Finally, the entire sample was heated again, and the QR code was scanned
again with a smartphone. Pictures of the sample throughout this test can be seen in Figure 7.
This test confirmed the applicability of QR codes as an undetectable authenticator for shape
memory polymers.
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3.4. Shape Recovery Cycle

The results of the fold-deploy test are shown in Figure 8. Here it was observed that
the first deformation had a recovery of 100.9%, and subsequent deformations approached
a recovery of 96.4%. The fact that the shape memory polymer recovered more than the
initial shape (100.9%) could be associated to the presence of residual strains induced
during the printing process. These residual strains appear to be released after the first
thermal cycle. A similar behavior is shown from the plot of temperature, strain %, and
load (Figure 8) where it can be seen, while the load was constant for each cycle (0 to 0.9 N),
the first cycle resulted in a higher deformation of the sample. This result is consistent
with other thermomechanical tests of shape memory polymers [35,39,40]. While the shape
recovery decreased and converged to a value with subsequent thermal cycles, the shape
retention ratio remained constant with each thermal cycle. From the thermomechanical
shape recovery test, the shape retention ratio did not significantly decrease with different
cycles and measured 90.7% with a standard deviation of 0.9%. Together, the fold-deploy
test and thermomechanical shape recovery analysis illustrate that the 3D printed SMP
samples largely exhibit the shape memory effect.
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3.5. Application of the SMP as a Thermal Switch

To illustrate the actuation of data collection via the MSP430 G2553 microcontroller, the
hybrid SMP/SMA switch was mounted to a circuit board. This switch takes advantage of
the distinct rubbery and glassy phase of the printed SMP material and mechanical behavior
of the SMA. The actuator consisting of the SMP printed switch, shape memory alloy wires,
and copper tape behaved as such: Upon the thermal stimulation (T > 90 ◦C) the SMP
became rubbery, and the SMA wires straightened. Once straight, the switch connected to a
pin on the breadboard, signaling the microcontroller to begin the data collection. By design,
once the temperature dropped below 90 ◦C, the SMA loses its actuation force and the SMP
recovers the bending shape, making the switch disconnect from the pin, and ending the
data collection. Dynamic data collection from the smart switch was achieved, resulting
in Figure 9, the temperature reading from the smart sensory printed circuit. Here, it was
observed the data recording from 90 ◦C, showing the oven heating to 105 ◦C, a decrease
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in temperature as the oven cools, to an abrupt cooling in the system after 40 min. Similar
readings were observed in several trials on the system. The manufactured sensor clearly
shows a practical application of smart electronics using a 3D printing technology.
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4. Conclusions

Through the process of direct pellet extrusion, an open-source FFF 3D printer has been
modified to 3D shape memory polymer parts. Using commercially available SMP pellets,
smart coupons were manufactured having an ultimate tensile strength of 55.58 MPa, with
a flexural strength of 73.4 MPa. The 3D-printed parts had a measured glass transition
temperature of 85.4 ◦C, which acted as the transformation temperature of the SMP. The
3D-printed shape memory polymer parts exhibited a shape recovery over 96% and a shape
retention of 90.7% across the investigated thermal cycles. The thermal triggering of shape
recovery and deformation of the 3D-printed parts were achievable by both hot water and
the use of a heat gun.

Finally, the 3D-printed smart materials were observed for their applicability in en-
hanced authentication and electronic structures. The usage of printed SMP parts was
successful in making a QR code that is undetectable when deformed, and detectable when
a thermal stimulus is applied. SMP and shape memory alloy parts were combined into
a hybrid actuator that successfully functioned as a thermal switch. Through a change
in temperature, the switching component deformed and relaxed to two distinct phases,
allowing the actuation of an electronic circuit.
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