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Abstract: A silicon-chip based double-deck three-dimensional (3D) solenoidal electromagnetic (EM)
kinetic energy harvester is developed to convert low-frequency (<100 Hz) vibrational energy into
electricity with high efficiency. With wafer-level micro electro mechanical systems (MEMS) fabrication
to form a metal casting mold and the following casting technique to rapidly (within minutes) fill
molten ZnAl alloy into the pre-micromachined silicon mold, the 300-turn solenoid coils (150 turns
for either inner solenoid or outer solenoid) are fabricated in silicon wafers for saw dicing into
chips. A cylindrical permanent magnet is inserted into a pre-etched channel for sliding upon
external vibration, which is surrounded by the solenoids. The size of the harvester chip is as small
as 10.58 mm × 2.06 mm × 2.55 mm. The internal resistance of the solenoids is about 17.9 Ω. The
maximum peak-to-peak voltage and average power output are measured as 120.4 mV and 43.7 µW.
The EM energy harvester shows great improvement in power density, which is 786 µW/cm3 and the
normalized power density is 98.3 µW/cm3/g. The EM energy harvester is verified by experiment
to be able to generate electricity through various human body movements of walking, running
and jumping. The wafer-level fabricated chip-style solenoidal EM harvesters are advantageous in
uniform performance, small size and volume applications.

Keywords: kinetic energy harvester; electromagnetic electricity generation; double-deck 3D metal
solenoids; MEMS technology; micro-casting technology; wafer-level fabrication

1. Introduction

Great efforts have been made to develop small-size and low-power electronic microsys-
tems for wearable applications [1,2], wireless sensors [3,4], wireless security-monitoring
microsystems [5], etc. Miniaturization, low costs and low power consumption are the
development tendency in the electronic microsystems. For many microsystems for filed
applications where wired alternating current (AC) electric supply is not available and bat-
tery supply is often troublesome to periodically replace or recharge, on-site self-powered
supply has become a major concern. Harvesting energy from the environment and then
converting it into electrical power is a promising alternative to conventional power sources.
Various ambient energy sources existing in the environment, such as vibration energy, solar
energy, thermal energy and so on [6] have been tried for conversion into electrical power.
Among these environmental energy sources, vibration energy has great advantage in broad
accessibility, which is abundant in the environment and distributed in a wide frequency
range, especially in low frequencies [7]. Thus, ambient vibration energy has attracted great
attention in recent years. As one of the self-powered solutions of electronic micro-systems,
various kinetic energy harvesters are explored extensively to convert ambient vibration
energy to electricity.
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Energy harvesters can be categorized by a generating mechanism such as a piezoelec-
tric (PE) energy harvester [8], piezo-electromagnetic (PEM) hybrid energy harvester [9],
electrostatic (ES) energy harvester [10,11], electromagnetic (EM) energy harvester [12–15],
thermoelectric generator (TEG) [16], triboelectric nanogenerator (TENG) [17], pyroelectric
generator [18,19], thermal radiation pyroelectric generator (PyG) [20,21], etc. Among these
energy harvesters, EM energy harvesters can easily convert relative motion between a
metal coil and magnet into electronic energy, and the output power density is relatively
high. Unfortunately, conventional wire-wound EM energy harvesters suffer non-batch
fabrication and large size, which obstructs miniaturization and highly uniform fabrication
of EM energy harvesters and chip-style integration in microsystems.

This paper proposes double-deck three-dimensional (3D) metal solenoids that are
fabricated with a silicon-wafer based integration method and can generate much larger
power density than single-layer solenoid structure [13]. A silicon mold for the 3D metal
solenoid with double-deck metal coils is firstly fabricated by micro electro mechanical
systems (MEMS) techniques including through-wafer deep reactive ion etch (DRIE). Then,
the pre-fabricated silicon molds, which consist of six-layer silicon wafers are stacked
together for molten alloy filling (or say casting). With the wafer-level micro-casting tech-
nique [22] that was used for forming through-silicon vias (TSVs), the molten ZnAl alloy
(with the low melting point as 380 ◦C) is fully filled into the molds of the whole wafer
within 10 min. After cooling, demolding and saw-dicing, the chip-based 3D double-deck
metal solenoid/channel structure is fabricated. By assembling a sliding permanent magnet
bar into a hollowed channel inside the core of the solenoid, which is formed during the
micromachining process for the silicon mold, relative movement between the solenoid and
magnetic bar can occur under external vibration along the channel direction, thereby gen-
erating electricity with the chip-style double-deck solenoid EM harvester. In the following
sections, we will describe design, fabrication and testing techniques of the developed EM
harvester.

2. Design and Modeling

The experimental prototype of the EM energy harvester, based on impact/free mo-
tion [23], is schematically shown in Figure 1a, which mainly consists of the double-deck 3D
metal solenoids EM energy harvester, two stoppers to limit the moving stroke of the sliding
magnet and fixing equipment. A cylindrical permanent magnet is inserted into the central
channel of the solenoid (see Figure 1b) that was pre-formed in the silicon substrate with
the MEMS technique. When the amplitude of ambient vibration yi(t) along the channel
direction is large enough, the permanent magnet can move freely and then collide with
two stoppers. Due to the reciprocating relative-movement between the magnet and the
solenoid, electrical power is generated in the solenoid by electromagnetic induction.

Figure 1. (a) Schematic prototype of the electromagnetic (EM) energy harvester; (b) Three-dimensional (3D) schematic of
the chip-style harvester; (c) schematic of the double-deck solenoid; (d) cross section cut along the line of A-A’ in (b).
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As shown in Figure 1b, the chip-style EM energy harvester consists of double-deck
3D metal solenoids, a cylindrical permanent magnet and two stoppers. The length of the
commercial permanent magnet (NdFeB N53) is 10 mm and the diameter is 1 mm. The sili-
con mold for micro-casting the metal solenoid and the central channel to accommodate the
sliding magnet (see Figure 1c) is fabricated in six silicon wafers (4-inch) that are further
stacked together. The 3D solenoid-coil has to intertwine inside the six silicon layers. The
inner layer coil (in yellow color) and the outer layer coil (in red) are clearly shown in
Figure 1d. The metal coil of the inner solenoid and that of the outer solenoid are electrically
connected in series, which move together relative to the sliding magnet. This configuration
can greatly improve the power generating density of the chip-style energy harvester.

M
..
y + (Cem + Ca)

.
x +

x
|x| FN +

.
x∣∣ .
x
∣∣µMg = 0 (1)

When input vibration yi(t) is applied to the system, the equation of permanent magnet
motion can be expressed as [23]:

Where M denotes the magnet mass, x = y− yi is the relative displacement between
magnet and solenoid, y is the absolute magnet displacement, Cem + Ca represents the total
viscous damping coefficient including electrical damping coefficient (Cem) and parasitic
damping coefficient (Ca) [7], FN is the impact force between magnet and stoppers, µ is
coulomb’s friction coefficient, g is acceleration of gravity.

The contact between the magnet and the stopper can be approximately a cylindrical/half-
space contact. Considering the elastic and damping characteristics of the colliding bodies,
the impact force can be described as [24]:

FN =

{
kθn + D

.
θ θ > 0

0 θ < 0
(2)

θ = |x| − s/2 (3)

where kθn and D
.
θ are elastic force and energy dissipation, respectively; k and D denote

generalized stiffness parameters and hysteresis damping coefficient, respectively, θ is pene-
tration in stopper,

.
θ represents relative penetration velocity, the exponent n is dependent on

the contact surface (n = 1 for cylinder/half-space contact) [25], s represents the magnetic
stroke that is the full travelling distance of the magnet from one stopper to another.

For cylindrical/half-space contact, the generalized stiffness parameter k is given as [26]:

k =
2·rmag

3·(γm + γs)
(4)

γm =
1− v2

m
Em

, γs =
1− v2

s
Es

(5)

where rmag represents the magnet radius, γm and γs are material properties of magnet
and stopper respectively, Em and Es are Young’s modulus of the magnet and stopper,
respectively; vm and vs stand for Poisson’s ratio of magnet and stopper. The hysteresis
damping coefficient D in Equation (2) is expressed by:

D =
3
(
1− e2)·k

4
.

θ−
θn (6)

where e and
.

θ− are restitution coefficient and penetration velocity just before impact.
In most linear vibration generators, the relative motion between the coil and the

magnet is along one direction, e.g., assuming the direction is the x direction, and the
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magnetic field B is generated by one permanent magnet. Therefore, the induced voltage can
be linked to the product of the flux linkage gradient and the velocity, which is given as [27]:

U = −dΦ
dt

= −dΦ
dx

dx
dt

= −dΦ
dx

.
x (7)

where Φ denotes total magnetic flux linkage through all the coil turns of the solenoid.
Power is output from the energy harvester by connecting the solenoid terminals with

a load resistance to flow current to the loading resistor. This current creates a magnetic field
which acts to oppose the permanent magnet field. The interaction between the induced
field and the permanent magnet field generates the electromagnetic force that opposes the
relative motion between magnet and solenoid. The instantaneous electromagnetic force
Fem is described as the product of velocity

.
x and electromagnetic damping Cem [27].

Fem(t) = Cem·
.
x (8)

In order to obtain the maximum electric power, it is important to design the energy
harvester with maximum electromagnetic damping Cem. The instantaneous power ex-
tracted by the electromagnetic force can be expressed with the product of velocity

.
x and

force Fem as
Pe = Fem(t)·

.
x (9)

The instantaneous power is dissipated in the load impedance and coil, which can be
given by:

Pe =
U2

Rcoil + Rload + jωLcoil
(10)

where Rcoil is coil resistance, Rload denotes load resistance, Lcoil represents coil inductance,
ω = 2π f is angular frequency of excitation, f is the frequency of excitation.

Therefore, the electromagnetic damping is

Cem =
1

Rcoil + Rload + jωLcoil
·
(

dΦ
dx

)2
(11)

The energy conversion efficiency η of the energy harvester is given by:

η =
Eelectrical

Einput
(12)

where Eelectrical represents output electrical energy and Einput denotes input vibration energy.
The analytic model for this novel EM energy harvester has been described as a numer-

ically solved approach. The mechanical parameters, material and geometry parameters are
designed based on the model prediction and listed in Tables 1 and 2.

Table 1. Designed mechanical parameters of the solenoid.

Parameter Symbol Value

Young’s modulus of magnet Em (GPa) 160
Young’s modulus of stopper Es (GPa) 1
Cylindrical magnet diameter dmag (mm) 1

Cylindrical magnet length lmag(mm) 10
Density of cylindrical magnet ρ

(
kg/m3) 7500

Magnet stroke s (mm) 11.4
Viscous coefficient Ca (Ns/m) 0.01

Poisson’s ratio of magnet vm 0.24
Poisson’s ratio of stopper vs 0.38

Restitution coefficient e 0.5
Coulomb’s coefficient µ 0.25

Solenoid length l (mm) 9.725
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Table 2. Material and geometric parameters of the solenoid.

Parameter Symbol Value

Effective length of the device chip ls (mm) 10.58
Effective width of the device chip ws (mm) 2.06

Effective thickness of the device chip hs (mm) 2.55
Width of the square-sectional channel wc (mm) 1.1
Length of the square-sectional channel lc (mm) 1.1

Wire width of the metal coil wcoil (µm) 40
Wire thickness of the metal coil tcoil (µm) 230

Gap distance between adjacent metal wires dcoil (µm) 25
ZnAl alloy resistivity ρ(µΩ·cm) 6.3

Number of the solenoid layers Nl 2
Turns of each coil layer Nt 150
Total turns of solenoid N 2× 150

Based on the design, the performance of the harvester is analyzed, with the obtained
prediction results shown in Figure 2. When the vibration frequency is less than 36 Hz, the
peak-to-peak voltage and averaged output power both keep increase with the increasing
vibration frequency. As for the vibration frequency to be higher than 36 Hz, the output
voltage and power drop rapidly. The results show that the maximum average power
reaches 45.07 µW at 36 Hz.

Figure 2. Simulated harvesting performance: peak-to-peak voltage and averaged power output in
terms of frequency.

3. Fabrication

Our group recently developed a MEMS fabrication technique to fill molten metal into
pre-fabricated micro-mold in silicon wafers to form a 3D metal solenoid which contains
many turns of dense coils [28]. We named the technique micro-casting and it can be
used to form on-chip integrated fluxgate sensors or transformers. After fulfilling the low
melting-point metal into the silicon mold, the liquid metal outside the solenoid structure
can be pinched off at the filling nozzles, due to the fact that the micromachined nozzles in a
pre-fabricated silicon nozzle wafer were designed in a slim shape with a aspect ratio higher
than two. Then the solenoid wafer is cooled down to room temperature and demolded
from the top-cover wafer and the bottom nozzle wafer. In this way, solenoid wafers can be
sequentially fabricated one by one and the nozzle wafer and the top-cover wafer can be
repeatedly used. The technical details of the micro-casting equipment and the fabrication
processes including the mold wafer preparation by using deep reactive ion etching (DRIE)
and the molten metal filling procedure can be referred to in [28].
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To form this double-deck solenoid, we use ZnAl alloy as the filling metal with the
melting point as 380 ◦C. After cooling, the alloy features about 3.6 times the resistivity
of copper. The step-by-step fabrication process for the double-deck solenoid is shown in
Figure 3 and described as follows. Please refer to Figure 3o–q, the silicon mold layers are
numbered from top to bottom as A1, A2, A3, B3, B2 and B1. The steps from a to e2 are for
A1 and B1 silicon layers, from f to k are for A2 and B2 silicon layers, from l to n are for A3
and B3 silicon layers. The A-A’ and B-B’ cross sections in Figure 3 can be referred to as in
the indication in Figure 1b.

Figure 3. Fabrication process of the silicon-chip based solenoid. The (A-A’) and (B-B’) cross sections
are defined in Figure 1b. (a–e2) Formation of the grooves and vias of the outer-layer coil (for the
silicon mold layers of A1 and B1); (f,g) formation of the vias of inner-layer coil (for A2 and B2);
(h) etching to form the channel for the sliding magnet; (i,j) etching to form the inner-layer-coil grooves;
(k) oxidation to insulate the surface mold; (l–n) etching and oxidation for the middle support layers
(for A3 and B3); (o) stacking the six silicon layers to form the whole mold for metal casting; (p)
formation of the solenoid by ZnAl-alloy casting and cooling; (q) inserting cylindrical magnet.
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(a) 2 µm-thick SiO2 is thermally grown and patterned to form etching windows for
the vias of the outer-layer top-coil in the A1 silicon mold and the outer-layer bottom-coil in
the B1 silicon mold.

(b) The vias are etched by using the DRIE technique.
(c1) The 2 µm-thick SiO2 on the back of the silicon wafer is patterned to form the

etching windows for the grooves of A1 silicon mold.
(c2) The SiO2 on the back of the silicon wafer is patterned to form the etching windows

for the grooves and electrode of the B1 silicon mold.
(d1) The grooves in the A1 silicon mold are etched by using DRIE technique. Mean-

while the through-silicon vias in the A1 silicon mold are also etched through.
(d2) The grooves and electrode in the B1 silicon mold are etched by using the DRIE

technique. At the same time, the through-silicon vias of the B1 silicon mold are also
etched through.

(e1)–(e2) The A1 silicon mold and B1 silicon mold are oxidized to secure electric
isolation between the metal wires and the silicon substrate for the outer-layer coil. The
SiO2 thickness is 1 µm.

(f)] The SiO2 is patterned to form the etching windows for vias of the inner-layer
top-coil in the A2 mold and the inner-layer bottom-coil in the B2 mold.

(g) With the photoresist as mask, the vias of the A2 silicon mold and the B2 silicon
mold are etched by using DRIE technique.

(h) The residual photoresist is moved away. Then, the cavity for the magnet sliding
channel and the vias of the A2 silicon mold and B2 silicon mold are etched simultaneously
with the DRIE technique.

(i) The SiO2 at the backside of A2 silicon mold and B2 silicon mold are patterned and
etched to form the windows for the following groove etching.

(j) The grooves of the A2 silicon mold and B2 silicon mold are etched by using the
DRIE technique. The through-silicon vias are also etched through.

(k) The A2 silicon mold and B2 silicon mold are oxidized to secure isolation between
the metal wires and the silicon molds for inner-layer coil. The SiO2 thickness is 1 µm.

(l) The SiO2 is patterned to form the etch windows for the vias of the middle support
layers of A3 and B3.

(m) Through-silicon vias are etched through with the DRIE technique.
(n) The A3 silicon mold and B3 silicon mold are oxidized to secure the insulation

between the metal wires and the middle-support silicon molds.
(o) The six silicon molds are aligned and stacked together to form an assembled

silicon mold. The channel for the magnet sliding is located at the center of the assembled
silicon mold.

(p) The grooves and the vias formed in the stacked silicon mold are filled with the
molten ZnAl alloy. After cooling and solidification, the complete 3D double-deck solenoids
are formed.

(q) A cylindrical NeFeB permanent magnet is inserted into the channel.
At the casting step (p) where the ZnAl alloy is filled, the technical details can be

referred to our previously published literature [28]. For a better understanding, a schematic
of the metal casting setup is shown in Figure 4 where both the inner-deck and outer-deck
coils are partly filled with ZnAl alloy. The assembly mold is placed in the micro-casting
equipment. The metal filling nozzles previously fabricated in the nozzle silicon wafer is
aligned to the metal inlet vias of the model. Pressured by nitrogen gas, the molten ZnAl
alloy flows out of the pool and inject into the solenoid mold through the nozzle and the
casting process can be implemented at a wafer level. After several minutes, the solenoid
mold can be fully filled with the ZnAl alloy. After cooling to room temperature, the wafer
containing the formed solenoids can be demolded from the top cover wafer and the bottom
nozzle wafer. And the metal casting process can be repeatedly implemented for the next
silicon mold wafer.
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Figure 4. Schematic of the molten metal casting setup. At the moment the double-deck solenoid has
been partly filled. The details of the casting process, including the following cooling, solidification
and the casted wafer demolding from the top-cover and the bottom nozzle wafers, can be read in
reference [28].

The fabricated double-deck 3D solenoid is shown in Figure 5. The scanning electron
microscope (SEM) image in Figure 5a shows the top view of the solenoid, where only the
150 turns of outer coil can be seen. Figure 5b shows the cross-sectional view of the solenoid,
where both the outer coil metal and the inner coil metal are demonstrated. Figure 5c is the
close-up view of the metal lines in Figure 5a. The 300-turn double-deck metal solenoid
occupies a space of 10.58 mm × 2.06 mm × 2.55 mm. The number of turns of either the
inner or the outer coil is 150 turns. As shown in Figure 5b, a total of six silicon-wafer
layers are surrounded and tied by the 3D double-deck metal solenoid. The inner solenoid
wounds around four layers of silicon substrate and the outer solenoid interleaves six layers
of silicon. The cross-sectional dimensions of the channel for accommodating the sliding
magnet is 1.1 mm× 1.1 mm. As shown in Figure 5b,c, the thickness of the ZnAl-alloy coil
is 230 µm for the lateral wires and 150 µm for the vertical wires, as well as, the metal width
it is 40 µm with a space of 25 µm. Figure 5d is the photograph of the solenoid-containing
silicon chip that is saw-diced from a 4-inch wafer and with the magnet inserted.

Figure 5. Fabricated double-deck 3D metal solenoid. (a) Top view scanning electron microscope (SEM) image of the solenoid.
(b) Cross- sectional view of the solenoids that is cut along the line B-B’ in (a); (c) enlarged top view showing the ZnAl-alloy
wires; (d) photograph.
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4. Testing Results

Two kinds of motion platform are designed for assessing the performance of the EM
energy harvester prototype. The first one is a single direction vibration testing setup, where
the excitation source is continuous sinusoidal mechanical vibration. The testing setup is
schematically shown in Figure 6a. The prototype EM energy harvester is mounted on
a board (shown in Figure 6b) and fixed onto a commercial JZK-5 shaker. A waveform
generator (Agilent 33120A, Agilent Technologies, Santa Clara, CA, USA) is used to excite
the shaker together with the harvester. The shaking direction is consistent with the magnet
sliding direction. With the combination of waveform generator, power amplifier and
shaker, the vibration is generated to excite the energy harvester. A standard accelerometer
is fixed on the harvester prototype to sense the vibrating acceleration. A data acquisition
card (NI USB-6003, 16bit, Engineer Ambitiously, Austin, TX, USA) is used to collect the
voltage generated from the energy harvester. The sampled data of voltage and acceleration
is transmitted into a laptop through a USB interface. The acceleration signal contains both
the vibration amplitude and the frequency. By adjusting the acceleration frequency and
amplitude, different vibration conditions for the energy harvester are obtained. In this way,
the experimental results can be acquired under different vibratory accelerations.

The second method is wearable testing. The excitation coming from human-body mo-
tion is discontinuous sway. The EM kinetic energy harvester and a standard accelerometer
are attached on the wrist of human-body. The wearable testing is carried out under three
different types of human-body motions of walking, running and jumping. Accordingly,
the three different experimental results are obtained.

Figure 6. Schematic of the testing system. (a) Testing apparatus; (b) energy harvester prototype for test.

Firstly, the chip-style EM energy harvester is tested under continuous sinusoidal
vibration. Giving different vibration amplitudes and frequencies, the EM energy harvester
is excited and the relative motion occurs between the cylindrical permanent magnet and the
solenoidal coil. By changing vibration frequencies from 16 Hz to 40 Hz, the experimental
results of the peak-to-peak voltage and the average power output are shown in Figure 7.
The maximum peak-to-peak voltage and average power output are obtained, and the
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tested results are 120.4 mV and 43.7 µW respectively. Compared with the simulated results
shown in Figure 2, the power generation performance of the tested device agrees well with
the designed result, thereby verifying the validity of the design model. The experimental
result is a little bit lower than in the design. The reason for this lies in the fact that: (a) some
inevitable defects existed in the solenoids coil result in larger internal resistance of the
solenoid, thereby leading to more ohmic loss of coil resistance; (b) the energy loss because of
the magnet-stoppers impacting is not included in the design model. The energy conversion
efficiency η is calculated under 8 g vibration at 36 Hz. When 8 g vibrating acceleration is
applied to the EM energy harvester, the input vibration energy is calculated as 67.88 µJ
and the generated electrical energy within one vibration period is 1.224 µJ. Therefore, the
energy conversion efficiency is calculated as 1.8%.

Figure 7. Experimental results of peak-to-peak voltage and average power output.

Figure 8 shows the tested electric-generation results when the EM energy harvester is
loaded with different resistances. The tested loading resistance is ranged from 1 Ω to 1000 Ω.
In addition, the vibration frequency and the acceleration amplitude are fixed at 36 Hz and 8 g,
respectively. The direction of the sinusoidal vibration is along the magnet sliding direction.
When the load resistance is matched with the resistance of the solenoid itself, the maximum
average power is output. The maximum average power output is 27.32 µW when the load
resistance is 20.6 Ω. The measured resistor of the ZnAl-alloy solenoid is 17.9 Ω, which is a
little bit lower than this matching value of 20.6 Ω. The reason probably lies in the fact that
the bonded wires for leading out the signal and the interconnection line in the testing set up
contribute extra resistance that should be attributed to the coil resistance.

Figure 8. Peak-to-peak voltage and averaged power under different load resistances at 36 Hz.
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Figure 9 shows the threshold-triggering property of the EM kinetic energy harvester.
The frequency of the sinusoidal mechanical vibration is fixed at 36 Hz. By controlling
the amplitude of the vibrational displacement, the energy harvester can vibrate under
different acceleration amplitudes, and the corresponding voltage and average power output
are obtained.

Figure 9. (a) Measured transient voltage, and (b) averaged power output under different acceleration
amplitudes ranged from 0 g to 8 g, where the frequency is fixed as 36 Hz.

Figure 9a shows the transient voltage generated from the energy harvester. In general,
the generated voltage increases along with increasing the vibration-acceleration amplitude.
The corresponding average power versus vibration acceleration is shown in Figure 9b.
While the vibration acceleration reaches a threshold acceleration of about 2.5 g, the average
power increases sharply. The reason is that the impact between magnet and stoppers
occurs. At the impact moment the moving velocity of the magnet has a great change,
thereby the magnetic flux linkage gradient dΦ

dx ·
dx
dt changes sharply and contributes to

the step increase in average power. After the vibration acceleration rises higher than
the threshold, the generated voltage and average power output increase gradually by
increasing the vibration acceleration. Figure 9b shows the triggering phenomenon of the
energy harvester under 36 Hz. After the triggering occurred at about 2.5 g, the generated
average power is suddenly lifted to 24.36 µW. It is worth indicating that, the threshold
triggering phenomenon has potential to be used as a sensor switch for self-powered
vibration monitoring applications. We will investigate it in depth in our future work.

For potential wearable applications, the device was fixed on the wrist to be excited by
human body movement. Then the EM energy harvester was tested, with the results shown
in Figure 10. Electric voltage and power were generated under different human motions of
walking, running and jumping. The peak-to-peak voltage and the average power during
walking were 18.01 mV and 0.682 µW at about 1 Hz. Under running at about 2 Hz, the
peak-to-peak voltage and the average power were 22.22 mV and 1.09 µW. The peak-to-peak
voltage and average power during repeated jumps (at about 4 Hz) reached 41.22 mV and
1.89 µW. The small sized chip-style EM energy harvester is promising for human motion
pattern recognition or even for a power supply for wearable microsystems. The device
can be imbedded into wearable electrical devices to convert human-body kinetic energy
into electrical energy for self-powering wearable applications. Considering that the solid
magnet bar should slide in the channel, the chip substrate cannot be in a flexible shape.
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Figure 10. Wearable testing results for generated voltage and average power under different human-
body movement modes. (a) Generated voltage under walking, running and jumping, sequentially
from left to right; (b) consequent average power under human walking, running and jumping.

The overall performance of the proposed kinetic energy harvester has been compared
with that of previously reported kinetic energy harvesters. Table 3 compares the perfor-
mance of the harvester in this work to those reported energy harvesters with different power
generation mechanisms: the electromagnetic energy harvester (EMEH), piezoelectric en-
ergy harvester (PEEH), piezo-electromagnetic energy harvester (PEMEH), electrostatic en-
ergy harvester (ESEH), thermoelectric generator (TEG), triboelectric nanogenerator (TENG),
and pyroelectric generator (PyG), and heat radiation pyroelectric generator (HRPyG). The
piezo-electromagnetic energy harvester can generate relatively high power, but its power
density is still not very high due to its very large size. By overall consideration of power
generation and device volume, the power density and power density per unit gravity
acceleration of our proposed chip-style EM energy harvester are both the highest. Our
proposed harvester has greatly improved the power density per unit gravity acceleration,
which is almost 31 times higher than that of the published ones under low-frequency (less
than 100 Hz) vibration. Furthermore, the output current is even 3180 times higher than
that of the published harvesters, thanks to the low internal resistance and relatively high
power generation of this work.



Micromachines 2021, 12, 74 13 of 15

Table 3. Power performance comparison with some recently published energy harvesters.

Reference PGM 1 MAP 2

(µW)
FMP 3

(Hz) Ambient Excitation Device Volume
(cm3) Resistance Output Voltage

(mV) Current PD 4 ( µW
cm3 ) NPD 5 ( µW

cm3 ·g )

This work EMEH 43.7 36 8 g 0.0556 17.9 Ω 120.4(pp) 1.6 mA 786 98.3
[8] PEEH 0.0855 36 1 g 0.016 330MΩ 75.5–115.5(rms) 0.51 µA 5.34 5.34
[9] PEMEH 1310 4.8 0.8 g 115.42 100 MΩ 10150(pp) 0.11 mA 11.35 14.2
[10] ESEH 45 20 1.3 g 11.25 100 MΩ - 21 µA 4 3.08
[12] EMEH 12.7 4 2 g 1.1 80 Ω 61–93.7(rms) 0.40 mA 11.5 5.75
[13] EMEH 16.1 37 6.5 g 0.045 7.8 Ω 37.05(pp) 1.4 mA 357.8 55.1

[16] TEG 290 - ∆T : 3.7–5.7 K Area =
13.8 mm2 174–255 Ω <0.55means 1.07 mA 0.115 µW/cm2 -

[17] TENG 2.5 × 105 7.5 Force = 20 N Area =
48 cm2 5 MΩ 2,600,000 0.48 mA 5.23 × 103

µW/cm2 -

[18] PyG 0.0238 - ∆T = 30 K Area =
7 cm2 1.5 MΩ 1500 1.5 µA 0.034 µW/cm2 -

[19] PyG 8.31 - ∆T = 5 °C Area =
12.25 cm2 50 MΩ 42,000 2.5 µA 0.678 µW/cm2 -

[20] HRPyG 0.76 0.5 T = 78 °C 0.1 3 MΩ 22, 700pp 0.503 µA 7.6 -
[21] HRPyG 7.16 - λ = 9.85–11.35 µm Area = 3.23 cm2 - 413 1.49 µA/cm2 2.2 µW/cm2 -

Note: 1 Power Generation Mechanism; 2 Maximum Average Power; 3 Frequency at Maximum Power; 4 Power Density; 5 Normalized Power Density.
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5. Conclusions

This study proposes a novel double-deck 3D metal solenoid integrated in a silicon
wafer for a low-frequency EM kinetic energy harvester. The measured maximum peak-to-
peak voltage and average power output were 120.4 mV and 43.7 µW, which occurred under
8 g ambient vibration at 36 Hz. Furthermore, the energy harvester showed a threshold-
triggering property. While the measured vibration acceleration reached the threshold
acceleration of about 2.5 g, the average power experienced a sudden step-increase. The
proposed EM energy harvester can also generate electricity under different kinds of human
body movement: walking, running and jumping, where the average power was 0.682 µW,
1.09 µW and 1.89 µW, respectively. Due to its high efficiency power generation performance
and threshold-triggered property, this proposed EM kinetic energy harvester with chip-
style 3D double-deck metal solenoid structure has the prospect to sustain a low-power
sensor or sensing switch for self-powered vibration monitoring applications like human
motion pattern recognition or wearable microsystems.
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