
electronics

Article

Efficient Memory Organization for DNN Hardware Accelerator
Implementation on PSoC

Antonio Rios-Navarro 1,* , Daniel Gutierrez-Galan 1 , Juan Pedro Dominguez-Morales 1 ,
Enrique Piñero-Fuentes 1 , Lourdes Duran-Lopez 1 , Ricardo Tapiador-Morales 1,2

and Manuel Jesús Dominguez-Morales 1

����������
�������

Citation: Rios-Navarro, A.;

Gutierrez-Galan, D.;

Dominguez-Morales, J.P.;

Piñero-Fuentes, E.; Duran-Lopez, L.;

Tapiador-Morales, R.;

Dominguez-Morales, M.J. Efficient

Memory Organization for DNN

Hardware Accelerator

Implementation on PSoC. Electronics

2021, 10, 94. https://doi.org/

10.3390/electronics10010094

Received: 29 November 2020

Accepted: 25 December 2020

Published: 5 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Robotics and Technology of Computers Lab, Universidad de Sevilla, Escuela Tecnica Superior de Ingenieria
Informatica—Escuela Politectica Superior, 41012 Sevilla, Spain; dgutierrez@atc.us.es (D.G.-G.);
jpdominguez@atc.us.es (J.P.D.-M.); enrique@atc.us.es (E.P.-F.); lduran@atc.us.es (L.D.-L.);
ricardo@atc.us.es (R.T.-M.); mdominguez@atc.us.es (M.J.D.-M.)

2 SynSense, CH73+X2 Zurich, Switzerland
* Correspondence: arios@us.es

Abstract: The use of deep learning solutions in different disciplines is increasing and their algorithms
are computationally expensive in most cases. For this reason, numerous hardware accelerators
have appeared to compute their operations efficiently in parallel, achieving higher performance
and lower latency. These algorithms need large amounts of data to feed each of their computing
layers, which makes it necessary to efficiently handle the data transfers that feed and collect the
information to and from the accelerators. For the implementation of these accelerators, hybrid devices
are widely used, which have an embedded computer, where an operating system can be run, and
a field-programmable gate array (FPGA), where the accelerator can be deployed. In this work, we
present a software API that efficiently organizes the memory, preventing reallocating data from one
memory area to another, which improves the native Linux driver with a 85% speed-up and reduces
the frame computing time by 28% in a real application.

Keywords: deep learning; embedded systems; PSoC; memory organization; FPGA; hardware accelerator

1. Introduction

Deep Learning (DL) has grown by leaps and bounds for several years, and currently
offers solutions to problems in many scientific fields [1], such as computer vision, where
there are DL algorithms that even outperform human performance [2], in natural language
processing, where DL is used to recognize spoken words and phrases [3], in robotics, where
it is used for robot navigation, grasping and object manipulation [4], and in control theory,
where DL is used to design system controllers [5].

These kind of algorithms can and must be trained in order to solve a specific task
and, indeed, they have achieved very good results, in some cases improving upon the
performance achieved by humans [6,7]. These algorithms are able to process input data
by looking for spatial and temporal correlation, which makes them very useful for image
and audio processing. There exist many kinds of DL algorithms, with Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) being the most widely
used; the former is typically used for image processing, while the latter is mostly used for
time-dependent signals.

These algorithms compute millions of Multiplication and Accumulation (MAC) oper-
ations, as can be seen in some well-known models like AlexNet [8] and VGG [9]. Tradition-
ally, these algorithms have been deployed in the cloud, where farms of General Purpose
Graphics Processor Units (GPGPUs) are used to execute the operations in order to achieve
better performance in parallel. A cloud solution can be used for those applications in which
communication latency is not an important factor, although there are applications where

Electronics 2021, 10, 94. https://doi.org/10.3390/electronics10010094 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-4163-8484
https://orcid.org/0000-0003-3100-0604
https://orcid.org/0000-0002-5474-107X
https://orcid.org/0000-0002-6035-9010
https://orcid.org/0000-0002-5849-8003
https://orcid.org/0000-0002-7268-2915
https://orcid.org/0000-0001-5669-9111
https://doi.org/10.3390/electronics10010094
https://doi.org/10.3390/electronics10010094
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10010094
https://www.mdpi.com/journal/electronics
http://www.mdpi.com/2079-9292/10/1/94?type=check_update&version=4


Electronics 2021, 10, 94 2 of 10

this aspect, among others such as power consumption, is critical for the preferred function-
ality of the system. Thus edge computing is required, which means that the computations
are performed locally, i.e., on the end device, reducing latency and protecting the privacy of
the data. For this reason, a number of low-power DL hardware accelerators have recently
appeared for both CNNs [10–12] and RNNs [13–15], among others.

There are accelerators that embed the whole algorithm in the hardware, limiting
the algorithm complexity due to the amount of available resources. They usually lack in
efficiency due to the memory bottleneck effect of having several layers of parallel hardware
accessing the same external memory [16]. Most recent accelerators have been designed to
compute Neural Networks (NN) layer by layer, and thus every time a layer is computed,
the accelerator must be configured with the layer parameters, known as weights and biases,
and then, the activation data must be sent to the accelerator in order to obtain the layer
computation results. These results are normally used as the activation data for the next
layer. This process is repeated to compute all of the network’s layers, which requires a
large amount of data that must be sent and received to and from the accelerator. Therefore,
the key for overall performance improvement is in data movements. To implement these
kind of systems, Programmable System on Chip (PSoC)-based platforms are a perfect
solution. These devices have a Field Programmable Gate Array (FPGA) part, where the
DL accelerator can be implemented, and an ARM-based processor that provides access
to DDR memory and where the accelerator software driver can be executed under an
embedded Linux Operating System (OS). Data transfers from the application processor
memory to the FPGA and vice versa are usually performed by generic Linux drivers, which
usually provide limited performance for the throughput requirements of these accelerators.
After studying their operation, we have seen that these drivers do not perform these
transfers efficiently for the working flow of these accelerators.

PSoCs offer two options, in which developers can design the software implementations
that will interact with the hardware of these devices. The first option is known as BareMetal,
and it uses a set of libraries that map the hardware to be used, facilitating its use. The second
option allows the integration of the software within an OS, called Petalinux in the case
of Xilinx, where a series of drivers can be enabled to handle the necessary hardware.
The first of these options is the most commonly used, due to its simplicity and ease of
use. In [5], an RNN accelerator was designed and deployed in a Zynq 7000 device using
the BareMetal solution. As can be seen in this work, this solution has some limitations in
terms of versatility and flexibility of use, although it achieves good transfer times between
the PS (Processing System) and the PL (Programmable Logic). To improve the versatility
and flexibility of use of these devices, the integration of an operating system is one of the
preferred solutions. The hardware is commonly used through OS drivers, which have some
limitations depending on the task to be performed. In particular, to transfer large amounts
of data between PS and PL, the native Petalinux AXI-DMA driver has limitations when
configuring the memory spaces that will be used for these transfers, taking into account
the way in which deep learning accelerators require the data.

In this work, we present a software API, called BiMapTab, for memory organization
to perform efficient Advanced eXtensible Interface—Direct Memory Access (AXI-DMA)
transfers in PSoC and Multi-Processor System on Chip (MPSoC) embedded system archi-
tectures. This API is able to define flexible memory regions that can be used for both types
of transfers, namely sending and receiving data to and from the accelerator. The results are
compared with the native Linux driver of these platform for AXI-DMA transfers, which
defines, with limitations, fixed memory regions for only sending or receiving data.

The rest of the paper is structured as follows: Section 2 describes the PSoC main
specifications, where the operation of all hardware and software components used to
perform the transfers is explained. Section 3 describes the proposed software API to reduce
the transfer latency and improve the performance of the DL accelerators. Section 4 presents
the results obtained, and, finally, Section 5 presents the conclusions.



Electronics 2021, 10, 94 3 of 10

2. PSoC System Architecture

The PSoC and MPSoC architectures are widely used to deploy typical hardware/-
software implementations. These architectures have two main and different elements,
the Processing System (PS) and the Programmable Logic (PL), which are physically in-
terconnected by several Advanced eXtensible Interface (AXI) interfaces under Advanced
Microcontroller Bus Architecture (AMBA) specification [17]. The CPUs housed in the PS
are powerful enough to execute an embedded OS, giving this kind of platform the required
versatility and flexibility for the development of applications that interact with a custom
hardware. Figure 1 shows an outline of the hardware structure of the PSoC and MPSoC
systems. Only those components of these heterogeneous systems that have been used and
play a role in the development of this work have been placed in the figure.

Figure 1 shows the two main elements of these systems: PS (left) and PL (right). In PS,
there is a processor where a reduced Linux can be run together with specific applications
for deep-learning acceleration, which extends the possibilities of embedded systems. They
include peripheral controllers, such as USB, that can control many types of sensors, such
as cameras or other types of sensors capable of generating images, which can be used as
inputs for the FPGA DL accelerator. As in many embedded systems, it has a Direct Memory
Access (DMA) controller for the massive movement of data between memory regions of
peripherals and memory.

Figure 1. PSoC (Programmable system on chip) and MPSoC (Multi-processor system on chip) simpli-
fied hardware architecture diagram. Only the components that have been used in the development
of this work are shown. Both heterogeneous PSoC and MPSoC systems have more elements in both
PS (Processing System) and PL (Programmable Logic) [18,19].

In PL, there is an FPGA that contains several components, such as Configurable Logic
Blocks (CLB), block RAMs, Digital Signal Processor (DSP) blocks and serial transceivers,
among others, that enable the possibility of designing and implementing a custom hard-
ware to increase the capabilities of the system. All these features, together with the high
bandwidth of interconnection between PS and PL, make this system an optimal solution
for hardware acceleration.

In order to facilitate the use of all possible needed peripherals on this device, an en-
hanced Linux-based OS (Petalinux) for embedded systems was used and parametrized for
this work. This OS places a software layer over the hardware, enabling a set of drivers to
handle the different peripherals that have been enabled in the PS. Among these drivers,
two of them play an important role in this work. These is the USB, which is needed for
connecting external devices, and the AXI-DMA driver that is needed for large data transfers
to and from the PS memory and PL. This work focuses on the study of the AXI-DMA driver
used to perform data transfers through the AXI-stream mode. This mode allows sending
large data bursts, which is optimal for applications that typically focus on a data-centric
and data-flow paradigm, such as hardware acceleration. The driver available in Petalinux
for these transfers reserves two clearly differentiated memory areas, one for transfers from
PS to PL, called Memory Mapped to Stream (MM2S), and another one for transfers in the



Electronics 2021, 10, 94 4 of 10

opposite direction, i.e., from PL to PS, called Stream to Memory Mapped (S2MM), as shown
in Figure 2. When the driver is configured and the memory areas are defined, its role cannot
be changed at runtime. This particularity poses a serious limitation for its use in handling
data transfers on NN accelerators, since more flexibility is needed to avoid unwanted
memory transfers between these two regions in the PS for preparing the output data of
a layer to be transmitted to a new layer. Therefore, data to be sent from an application
running on the PS to the accelerator (displayed on the PL) should be copied to the memory
area labeled as MM2S. On the other hand, the data generated by the accelerator will be
sent and copied to the memory area labeled as S2MM. Once this transfer is completed,
the application can access that memory area and read the data. Algorithm 1 shows the
steps for the layer-by-layer data transfer of two-layer NN execution.

Algorithm 1: Transference trace for the execution of a 2-layer NN.

1. Copy layer 1 configuration data (kernels and biases) to the MM2S area and launch the DMA transfer. Wait until the
transfer is completed.

2. Copy layer 1 activation data to the MM2S area and launch the transfer. Wait until it is over. At this point the accelerator
starts to generate data (layer 2 activations), sending the data to the S2MM memory area.

3. Wait until the previous transfer (accelerator to S2MM) is completed.
4. Copy layer 2 configuration data to the MM2S area and launch the transfer. Wait until the transfer is completed.
5. Copy layer 2 activation data from S2MM to the MM2S area and launch the transfer. Wait until it is over. At this point

the accelerator starts to generate the output data, sending the data to the S2MM memory area.

Algorithm 1 shows the number of times that data must be copied to the memory
areas defined by the driver. Copying data means moving that data from one memory
area to another, which is a waste of time and resources on a task that does not provide
any additional value. The NN algorithms handle a large amount of data, and thus these
unnecessary data movements in the memory become a drawback.

Figure 2. Memory organization for Petalinux AXI-DMA (Advanced eXtensible Interface-Direct
Memory Access) native driver.

This work presents an API that improves this deficiency, allowing organizing areas in
the memory capable of implementing both roles and being configured at run time, in order
to save data movements between memory areas.

3. BiMapTab API

The API proposed in this work consists of a series of classes that allow organizing
the memory efficiently in order to define the areas that will be configured in both MM2S
and S2MM modes, making it possible to modify their behavior at execution time. In this
section, each of the API elements are defined, along with explanations on how the memory
is organized to allow performing the transfers efficiently.

The purpose of this API is to provide a physical memory organization, where each
area that is reserved can be used to perform bidirectional transfers and, at the same time,



Electronics 2021, 10, 94 5 of 10

provide the virtual pointer to those physical memory areas, allowing them to be used from
an application in the user space on a Linux-based OS. Figure 3 shows the UML diagram of
the three main classes (orange shapes) and the struct (blue shape).

Figure 3. API classes and relational diagram. Orange elements represent C++ classes and the blue
element represents a C++ struct.

3.1. Memory_Manager

This class is in charge of opening the memory map and establishing an area, defined
by the memoryOffset and outside the space reserved for the OS, where the different mapping
tables will be created. This class has to be instantiated only once, since there would be
no purpose in having more than one memory manager, as some mapping tables could
be overlapping in the same memory area. Therefore, this class was implemented as a
singleton, which allows it to be referenced from any part of the application, although it will
only create one instance of the class. This class has two main methods: one used to get or
create an instance of this class, getInstance(), and another one used to create a new memory
mapping table with a required size, createMapTab(size). Once a new mapping table is created,
the memory manager will increase the offset by pointing to the next free memory address
where the next mapping table will be created. To maintain proper memory alignment,
the size of the mapping tables are created as a multiple of the page size of the OS.

3.2. Chunk

This is a C++ data structure with three attributes: phyPointer, a physical memory
address where the data start; virtPointer, a virtual memory address where the data can be
accessed; and size, the number of bytes that the data occupy. This is the basic element of
the API and will be used to perform the transfers in the system.

3.3. Mem_Mapping_Tab

The instances of this class are created by the memory manager and their purpose is
to divide the memory area reserved for the mapping table into small subareas, chunks,
where the data are distributed according to the user’s needs. This class has four attributes:
phyPointer, a physical address where the memory area reserved for the mapping table



Electronics 2021, 10, 94 6 of 10

starts; virtPointer, the virtual address of the first accessible data; size, the number of bytes
reserved for the whole mapping table; and chunks[], a vector of chunks that implements
the set of partitions that the user has created in the mapping table. This class has several
methods that return the previously defined attributes, although there are two methods of
greater importance. The first one, addChunk(size), creates a new element in the chunks[]
attribute by returning the recently created chunk to be initialized with the necessary data.
The second one, getChunk(id), returns the element at the id position of the chunk[] attribute.
Therefore, we can organize the mapping table as needed and access the chunks we need to
transfer. All chunks are created consecutively in the mapping table.

3.4. Axidma

This class is responsible for performing transfers via the AXI-DMA controller. When
the controller is instantiated in hardware, it is mapped to a memory address, where each of
its registers can be accessed in order to check its status and control its actions. To create an
instance of this class, it is necessary to know the memory address, axidmaMapAddr, where
the controller has been mapped to create the instance referencing such addresses. This
class has methods to reset, start and stop the controller as well as write and read methods.
The write method performs MM2S transfers, sending data from PS to PL, whereas the
read method performs S2MM transfers, sending data from PL to PS. Both methods require
the physical address of the memory area where the data will be sent or received as input
parameters, as well as the size (in bytes) of the transfer. To send or receive transfers, the only
action needed is to call the write or read functions, respectively, using the phyPointer and
size of a chunk as parameters.

Figure 4 shows the resulting memory organization by creating two mapping tables in
the memory area governed by the memory manager. Three chunks of memory have been
created in each mapping table, which can be used to perform transfers through both the
MM2S and S2MM channels using the AXI-DMA controller.

Figure 4. Memory organization for software API implementation.

The main advantage of the proposed API with respect to the native AXI-DMA Petal-
inux driver is the possibility of defining memory spaces that support both types of transfers,
i.e., from PS to PL and vice versa. Unlike the native driver, once the memory area has been
reserved by the Memory_manager, creating a Mem_mapping_tab, this area can be divided
into different chunks, which can be used to perform any type of transfer on the fly. To per-
form the transfer, the Axidma instance requires the physical memory address and the size
of the chunk to read (transfer from PL to PS) or write (transfer from PS to PL) the data.
To achieve this behavior using the native driver, the same memory area must be reserved
indicating the transfer direction for each transaction. Another advantage is the network
data organization. Each network layer has two types of data: the configuration (kernel and
biases) and the activation data. The proposed API allows the software developer to define
different chunks, one for each data type and per layer, simplifying the management of all
data and their transfer to the accelerator. In deep learning applications, data management



Electronics 2021, 10, 94 7 of 10

is an intensive task due to the huge amount of data that this kind of algorithms need
and generate.

4. Results

To test the performance and versatility of the API proposed in this work, two tests
were carried out, in which the performance of the data transfers was measured. The first
test, loopback, was an implementation where the MM2S output and S2MM input channels
were connected at the PL side (i.e., without the DL accelerator in between). This connection
allowed data sent from PS to PL to be sent back from PL to PS without any modification.
The second test consisted in an implementation using a hardware accelerator in the PL
part, which was fed from the PS, making transfers through the MM2S channel, and the
accelerator then sent its result back through the S2MM channel.

4.1. Loopback Test

Two applications were implemented: one using the AXI-DMA native Linux driver
and the other using the API proposed in this paper. Both applications performed the same
task, generating a series of data in a given memory area and sending these data from PS
to PL. These data were sent back from the PL to the PS, and once the data were received,
the operation was repeated. This process was carried out 100 times for each transfer size
specified in Table 1. The difference between the native driver and the proposed API resides
in the ability to reconfigure the Mem_mapping_tab elements on the fly, avoiding the data
movements between memory areas. In the native driver implementation, when data are
received from the PL, it is necessary to move those data from the memory area where they
have been received to the memory area used to send data from PS to PL. However, using
the proposed API, it is not necessary to move these data since both memory areas can be
used for both types of transfers.

Table 1. AXI-DMA transfers time (ms) for the Linux native driver and proposed software API.

Zynq PSoC Zynq U+ MPSoC
Trans. Size Linux BiMapTab Linux BiMapTab

1 KB 0.03/0.12 0.008/0.09 0.01/0.15 0.004/0.07
4 KB 0.02/0.29 0.01/0.15 0.01/0.19 0.007/0.11
16 KB 0.08/0.23 0.04/0.18 0.03/0.32 0.02/0.12
64 KB 0.2/0.6 0.1/0.3 0.1/1.1 0.08/0.18

256 KB 1.2/2.9 0.6/0.8 0.4/4.6 0.3/0.4
1 MB 5.06/11.5 2.6/2.6 1.9/18.5 1.31/1.3
4 MB 20.2/45.6 10.4/10.6 8.1/74.3 5.2/5.3
8 MB 42.4/93.6 20.9/21.1 15.6/148.6 10.4/10.5

Table 1 shows the results of both the Linux native driver and the software API pro-
posed in this work, for eight different transfer sizes. In each cell, two measurements (in
milliseconds) can be seen: the first one is for writing transfers (PS to PL) and the second one
is for reading transfers (PL to PS). As can be observed, the read transfers are slightly longer
than the write transfers for the same transfer size. This is due to the way in which time is
measured. For writing, time is measured in PS, which is where the transfer is launched.
Therefore, time is measured from right before the transfer is made until the transfer is
completed. On the other hand, for reading, the transfer is launched from PL, but time is
measured in PS by the test application under execution, i.e., time is measured from right
before launching the read command until the transfer is completed. However, there is a
delay time between the command launch and the actual start of the transfer from PL to
PS. The results show that the proposed API achieved a 85% speedup with respect to the
Linux driver.

In addition to the software transference comparison, two Xilinx commercial platforms
were evaluated: Zynq PSoC, using the commercial platform Mini Module Plus from Avnet,



Electronics 2021, 10, 94 8 of 10

which holds a 1 GB DDR3 SDRAM, and ZynqU+ MPSoC, using the commercial platform
UltraSOM+ MPSoC from Trenz, which holds a 4 GB DDR4 SDRAM. The time difference
between the Zyqn PSoC and ZynqU+ MPSoC platforms is due to the high performance
port where the AXI-DMA module is connected and the SDRAM technology. In the ZynqU+
MPSoC platform this port is 128 bits, whereas in the previous version, it is 64 bits.

4.2. Accelerator Integration Test

In this test, our API was integrated into the software of a CNNs accelerator [10],
deployed in the PL and put to work at 60MHz in order to process a CNNs trained to
recognize the hand gestures used in the game Roshambo [20] (“rock, paper, scissors”).
Like the vast majority of accelerators, the NN operations are processed layer by layer.
This NN consists of five convolution layers (pooling and Rectified Linear Unit (ReLU)
are also included in each layer), and thus two mapping tables were defined: one for
the configuration parameters of each layer (biases and kernels) and another one for the
activation parameters. In the first mapping table, five chunks of memory were created
where the configuration data of the five layers are initially be copied. In the second mapping
table, two chunks of memory were created, which are used for the activation parameters.
Initially, the activation parameters of the first layer are copied into the first chunk of
memory of this mapping table, using the second chunk to collect the results produced by
the accelerator, which correspond to the activation parameters of the next layer. In the
next cycle, the second chunk of memory (where the result produced by the accelerator was
stored) is used to send the activation parameters to the accelerator, using the first chunk of
memory to collect the results produced by the accelerator. This mechanism avoids having
to move data within memory, which does not generate any benefit.

Figure 5 shows the NN execution scheme using the AXI-DMA native Linux driver.
It includes the computation time that the accelerator spends on each layer, as well as the
transfer time of both the activation parameters and the configuration data for each layer.
As can be seen, the data transfer time plus the execution time of the software that controls
the accelerator is greater than the total time that the accelerator requires to perform the
calculations of the entire network. The total time for computing a frame is 10.24 ms. When
replacing the native driver by the API proposed in this work, the time required to compute
a complete frame is 8 ms, obtaining an acceleration of 28%.

Figure 5. Roshambo computing time scheme on Nullhop hardware accelerator using the AXI-DMA
Linux native driver.

This paper focuses on the development of an API for AXI-DMA transfers on Zynq
and Zynq+ devices governed by an OS. There is another alternative to the OS called
BareMetal, which is similar to the workflow of conventional microcontrollers. The resulting
software runs on the PS using all of its computing power, since it is the only process that is
running on the core. BareMetal allows a more dedicated use of the system’s resources in
order to achieve higher performance, but it offers little flexibility and versatility. In [21],
a comparison is made in terms of execution time and performance of an RNN accelerator
between both alternatives, BareMetal and Petalinux. That work shows that the difference
in time and performance between the two alternatives is feasible, and highlights the
advantages offered by the integration of the OS into the system.



Electronics 2021, 10, 94 9 of 10

On the other hand, in Table 2, a qualitative and quantitative comparison is shown for
when there is a need to perform data movements in memory. If the mechanism for carrying
out transfers does not support both directions, the transfer time increases considerably due
to the movement of data from one memory area to another.

Table 2. Comparison with existing mechanism for AXI-DMA transfers on Xilinx PSoC and MPSoC architectures.

OS
Integration

Bidirectional
Transfer On-Fly

Memory Size
Configuration On-Fly

Read Transfer
Time (ms)

Write Transfer
Time (ms)

BareMetal 7 7 7 6.23 11.15
Native driver 3 7 7 8.65 19.36

BiMapTab
(This work) 3 3 3 4.33 5.73

5. Conclusions

This work presents a novel concept, called BiMapTab, to manage AXI-DMA bidirec-
tional transfers in PSoC and MPSoC architectures that includes a new memory organization
and an API software designed to properly manage the memory mapping table in order to
efficiently govern data transfers in DL hardware accelerators without reallocating them to
different memory spaces. A comparison between the proposed API and the native Linux
driver showed a 85% speedup and, after testing it in a real task, it achieved an acceleration
of 28% in computation time.

Author Contributions: Conceptualization: A.R.-N.; methodology: A.R.-N., D.G.-G.; software: A.R.-
N., R.T.-M.; formal analysis: A.R.-N., D.G.-G., J.P.D.-M.; investigation: A.R.-N., R.T.-M., E.P.-F.;
resources: A.R.-N., R.T.-M., M.J.D.-M.; data curation: A.R.-N., D.G.-G., J.P.D.-M.; writing—original
draft preparation: A.R.-N.; writing—review and editing: A.R.-N., D.G.-G., J.P.D.-M., E.P.-F., L.D.-L.;
visualization: A.R.-N., J.P.D.-M., E.P.-F., L.D.-L.; supervision: L.D.-L., M.J.D.-M.; project administra-
tion: M.J.D.-M.; funding acquisition: M.J.D.-M. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was funded by Spanish Agencia Estatal de Investigación (AEI) project MIN-
DROB: “Percepción y Cognición Neuromórfica para Actuación Robótica de Alta Velocidad (PID2019-
105556GB-C33/ AEI/10.13039/501100011033)”.

Acknowledgments: The authors would like to thank the Spanish Agencia Estatal de Investigación
(AEI) for support this work and Prof. Alejandro Linares-Barranco for his active participation and
expert suggestions. The work of Daniel Gutierrez-Galan was supported by a Formación de Personal
Investigador Scholarship from the Spanish Ministry of Education, Culture, and Sport.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, Y.; Luo, T.; Liu, S.; Zhang, S.; He, L.; Wang, J.; Li, L.; Chen, T.; Xu, Z.; Sun, N.; et al. Dadiannao: A machine-learning

supercomputer. In Proceedings of the 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture, Cambridge,
UK, 13–17 December 2014; pp. 609–622.

2. Jarrett, K.; Kavukcuoglu, K.; Ranzato, M.; LeCun, Y. What is the best multi-stage architecture for object recognition? In
Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 27 September–4 October 2009;
pp. 2146–2153.

3. Gao, C.; Braun, S.; Kiselev, I.; Anumula, J.; Delbruck, T.; Liu, S.C. Live Demonstration: Real-Time Spoken Digit Recognition
using the DeltaRNN Accelerator. In Proceedings of the 2019 IEEE International Symposium on Circuits and Systems (ISCAS),
Sapporo, Japan, 26–29 May 2019.

4. Levine, S.; Pastor, P.; Krizhevsky, A.; Ibarz, J.; Quillen, D. Learning hand-eye coordination for robotic grasping with deep learning
and large-scale data collection. Int. J. Robot. Res. 2018, 37, 421–436. [CrossRef]

5. Gao, C.; Gehlhar, R.; Ames, A.D.; Liu, S.C.; Delbruck, T. Recurrent Neural Network Control of a Hybrid Dynamic Transfemoral
Prosthesis with EdgeDRNN Accelerator. arXiv 2020, arXiv:2002.03197.

http://doi.org/10.1177/0278364917710318


Electronics 2021, 10, 94 10 of 10

6. Dominguez-Morales, J.P.; Jimenez-Fernandez, A.F.; Dominguez-Morales, M.J.; Jimenez-Moreno, G. Deep neural networks for the
recognition and classification of heart murmurs using neuromorphic auditory sensors. IEEE Trans. Biomed. Circuits Syst. 2017,
12, 24–34. [CrossRef] [PubMed]

7. Grace, K.; Salvatier, J.; Dafoe, A.; Zhang, B.; Evans, O. When will AI exceed human performance? Evidence from AI experts. J.
Artif. Intell. Res. 2018, 62, 729–754. [CrossRef]

8. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Advances in
Neural Information Processing Systems; ACM: New York, NY, USA, 2012; pp. 1097–1105.

9. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
10. Aimar, A.; Mostafa, H.; Calabrese, E.; Rios-Navarro, A.; Tapiador-Morales, R.; Lungu, I.; Milde, M.B.; Corradi, F.; Linares-Barranco,

A.; Liu, S.; et al. NullHop: A Flexible Convolutional Neural Network Accelerator Based on Sparse Representations of Feature
Maps. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 644–656. [CrossRef] [PubMed]

11. Chen, Y.; Krishna, T.; Emer, J.S.; Sze, V. Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks. IEEE J. Solid-State Circuits 2017, 52, 127–138. [CrossRef]

12. Gokhale, V.; Zaidy, A.; Chang, A.X.M.; Culurciello, E. Snowflake: An efficient hardware accelerator for convolutional neural
networks. In Proceedings of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA,
28–31 May 2017; pp. 1–4. [CrossRef]

13. Gao, C.; Neil, D.; Ceolini, E.; Liu, S.C.; Delbruck, T. Deltarnn: A power-efficient recurrent neural network accelerator. In
Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA,
25–27 February 2018; pp. 21–30.

14. Li, Z.; Ding, C.; Wang, S.; Wen, W.; Zhuo, Y.; Liu, C.; Qiu, Q.; Xu, W.; Lin, X.; Qian, X.; et al. E-RNN: Design optimization for
efficient recurrent neural networks in FPGAs. In Proceedings of the 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA), Washington, DC, USA, 16–20 February 2019; pp. 69–80.

15. Chang, A.X.M.; Culurciello, E. Hardware accelerators for recurrent neural networks on FPGA. In Proceedings of the 2017 IEEE
International symposium on circuits and systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017; pp. 1–4.

16. Tapiador-Morales, R.; Rios-Navarro, A.; Linares-Barranco, A.; Kim, M.; Kadetotad, D.; Seo, J.S. Comprehensive Evaluation of
OpenCL-Based CNN Implementations for FPGAs. In Proceedings of the International Work—Conference on Artificial Neural
Networks, Cadiz, Spain, 14–16 June 2017; pp. 271–282.

17. AMBA, A. AXI4-Stream Protocol Specification. Available online: https://developer.arm.com/documentation/ihi0051/a/
(accessed on 29 October 2020).

18. Crockett, L.; Elliot, R.; Enderwitz, M.; Stewart, B.; Northcote, D. The Zynq Book; Strathclyde Academic Media: Glasgow, UK, 2015.
19. Crockett, L.; Northcote, D.; Ramsay, C.; Robinson, F.; Stewart, B. Exploring Zynq MPSoC; Strathclyde Academic Media: Glasgow,

UK, 2019.
20. Lungu, I.A.; Corradi, F.; Delbrück, T. Live demonstration: Convolutional neural network driven by dynamic vision sensor

playing RoShamBo. In Proceedings of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD,
USA, 28–31 May 2017; p. 1.

21. Gao, C.; Rios-Navarro, A.; Chen, X.; Liu, S.C.; Delbruck, T. EdgeDRNN: Recurrent Neural Network Accelerator for Edge Inference.
IEEE J. Emerg. Sel. Top. Circuits Syst. 2020, 10, 419–432. [CrossRef]

http://dx.doi.org/10.1109/TBCAS.2017.2751545
http://www.ncbi.nlm.nih.gov/pubmed/28952948
http://dx.doi.org/10.1613/jair.1.11222
http://dx.doi.org/10.1109/TNNLS.2018.2852335
http://www.ncbi.nlm.nih.gov/pubmed/30047912
http://dx.doi.org/10.1109/JSSC.2016.2616357
http://dx.doi.org/10.1109/ISCAS.2017.8050809
https://developer.arm.com/documentation/ihi0051/a/
http://dx.doi.org/10.1109/JETCAS.2020.3040300

	Introduction
	PSoC System Architecture
	BiMapTab API
	Memory_Manager
	Chunk
	Mem_Mapping_Tab
	Axidma

	Results
	Loopback Test
	Accelerator Integration Test

	Conclusions
	References

