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Abstract: This paper presents a fully integrated Peripheral Component Interconnect (PCI) Express
(PCIe) Gen4 physical layer (PHY) transmitter. The prototype chip is fabricated in a 28 nm low-power
CMOS process, and the active area of the proposed transmitter is 0.23 mm2. To enable voltage scaling
across wide operating rates from 2.5 Gb/s to 16 Gb/s, two on-chip supply regulators are included in
the transmitter. At the same time, the regulators maintain the output impedance of the transmitter to
meet the return loss specification of the PCIe, by including replica segments of the output driver and
reference resistance in the regulator loop. A three-tap finite-impulse-response (FIR) equalization is
implemented and, therefore, the transmitter provides more than 9.5 dB equalization which is required
in the PCIe specification. At 16 Gb/s, the prototype chip achieves energy efficiency of 1.93 pJ/bit
including all the interface, bias, and built-in self-test circuits.

Keywords: CMOS; PCI Express; supply regulator; scalability; transmitter

1. Introduction

Because Peripheral Component Interconnect Express (PCIe) is one of the most fast-
evolving high-speed interface standards (for example the per-pin data rate is doubled
every 4 years [1]), there are a lot of design challenges to meet PCIe Gen4 physical layer
(PHY) transmitter specification. The challenges can be summarized as follows: at first,
the maximum data rate increases to 16 Gb/s, while that of the prior PCIe Gen3 is 8 Gb/s.
Moreover, because PCIe is required to provide backward compatibility, a PCIe Gen4
transmitter should also cover a lower data rates of 2.5 Gb/s (Gen1), 5 Gb/s (Gen2), and
8 Gb/s (Gen3) [1]. Secondly, it is required to implement a three-tap finite-impulse-response
(FIR) equalization which include a pre-cursor and a post-cursor, while the equalization
coefficients must be controllable, to suppress intersymbol interference (ISI) from variable
channel loss. Thirdly, transmitter output impedance should be matched well as specified
in return loss requirement, to minimize reflections for better signal integrity. Lastly, the
output voltage swing should be adjustable.

In addition to the above essential requirements, supply voltage scalability is another
key knob for improving energy efficiency across such wide data rates [1–14]. Ideally, the
energy efficiency is expected to be flat across the data rate [6], which is rarely achieved
in conventional fixed-voltage designs. Figure 1a shows an example of energy efficiency
of the fixed-voltage design. The energy consumption is categorized with static current
consumption, dynamic switching energy consumption, and signaling power over lossy
transmission line [15,16]. At a lower data rate, the energy consumption by the signaling
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and the static current becomes less efficient because a fixed power is consumed regardless
of the data rate. On the hand, the dynamic switching energy is fixed to CV2, regardless
of the data rate. As a result, the overall energy efficiency is worse at a low data rate [17].
The signaling energy increases at a high data rate due to equalization power. On the other
hand, the supply scaling allows improving the energy efficiency at a low data rate, as
shown in Figure 1b, where a linear voltage–frequency scaling is assumed [17]. Because
the contribution from the dynamic switching is significantly reduced at a low data rate,
the energy efficiency curve becomes flatter compared to Figure 1a, in addition to the
improved energy efficiency. Moreover, the supply scaling becomes more attractive in
recent CMOS process technology where the circuits can take advantage of robust low-
voltage operation [18]. This work presents design techniques for PCIe Gen4 transmitter
and fabrication results in a 28 nm CMOS, which offers the supply-voltage scalability, as
well as all the requirements of PCIe Gen4.
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This paper is organized as follows: Section 2 describes the overall architecture and the
details of circuit implementation for the proposed transmitter. In Section 3, the fabrication
results from the prototype chip are discussed. Lastly, Section 4 concludes this paper.

2. Implementation of the Proposed PCIe Gen4 Transmitter

Figure 2 shows an overall architecture of the proposed PCIe Gen4 transmitter, which
is fabricated in a 28 nm low-power CMOS process. In order to support the wide bitrate
range without power penalty, a CMOS logic-based circuit topology and a scalable supply
voltage using an on-chip regulator are employed; hence, a configurable voltage scaling
is implemented in the proposed transmitter [19]. Considering the fanout-of-four (FO4)
inverter delay across the process, voltage, and temperature (PVT) corners in the 28 nm
CMOS technology, a half-rate clocking structure and a time-multiplexing driver are chosen
to relax the required circuit bandwidth [12]. P-over-N source-series terminated (SST)
or voltage-mode (VM) driver topology with stacked NMOS and PMOS is adopted to
implement the time-multiplexing driver. Because the final 2:1 multiplexing happens at the
very end of the transmitter, no ultra-high-speed (>8 Gb/s) circuit is used; hence, substantial
power saving is achieved. In addition, the transistor stacking relaxes the electrostatic
discharge (ESD) requirement due to CMOS snapback breakdown [20,21]. Compared to
triple-stack topology with a quarter-rate clock [12], the double-stack allows less charge
sharing and eases the overhead of multi-phase generation.
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Figure 2. Overall architecture of the proposed Peripheral Component Interconnect Express (PCIe)
Gen4 transmitter.

An eight-way parallel data stream is generated from the on-chip pseudo-random
binary sequence-7 (PRBS-7) generator. Subsequently, the parallel data are serialized to a
two-way stream by half-rate clock. The half-rate clock is externally provided and internally
distributed using CMOS buffers. An open-loop duty-cycle corrector (DCC) based on an AC-
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coupled trans-impedance amplifier (TIA) is used to correct the duty-cycle distortion of the
incoming clock [22–24]. The PRBS generator and the serializer are under a separate digital
supply (LVDD) domain, to decouple the digital switching noise from the analog circuits.

In the pre-driver stage, high-speed custom flip-flops are used to synchronize the
6 bit half-rate data stream for three-tap FIR equalization (D1<1:0>, D0<1:0>, D-1<1:0>)
from the serialized stream. This also includes the data and clock buffers which drive
large transistors of the time-multiplexing output drive, where the P-over-N SST topology
provides the high output swing of PCIe Gen4 specification (>800 mV) with reasonable
linearity (return loss < −10 dB) [25]. The pre-driver and the output driver are under the
regulated supply voltages, VDDPU and VDDPD, respectively, which are configurable. Two
supply regulators are dedicated to generating VDDPU and VDDPD from the 1.8 V supply
(HVDD), which are used to match the output impedance of the transmitter, as well as
to configure the voltage scaling and the output swing. The 1.8 V supply can be further
reduced depending on the link requirements. Replica slices (pull-down path in the VDDPD
regulator, pull-up path in the VDDPU regulator) of the output driver are used in the
regulators to capture the impedance information of the actual output driver. Both the
output driver and the replicas are segmented; therefore, the number of active segments
becomes configurable. Because the regulators basically equalize the impedance of the
replicas with the reference resistance by adjusting the regulated voltage, configuring the
number of active segments achieves on-chip supply scaling. Specifically, because of its
inverter-like structure, the P-over-N SST driver does not allow the pull-up (PMOS) and
pull-down (NMOS) branches be turned on simultaneously. As a result, the pull-up and
pull-down impedances can be controlled independently. Assuming linear operation, the
impedance is a dominant function of gate-overdrive voltage, which is VDDPU-VT,P or
VDDPD-VT,N, respectively, for pull-up and pull-down paths. Therefore, changing the
number of active segments in the replica array lets the regulators adjust the VDDPU
and VDDPD accordingly to match the impedance of the replica array and the reference
resistance. For example, once the number of active segments is reduced, the regulator
raises the supply voltage to increase the resistance per segment, to keep the same overall
resistance. Therefore, the driver provides a stable output impedance regardless of the
driver configuration, as [12] validates that the impedance variation is less than 10% of the
target impedance. The segmentation of the output driver also enables the transmitter to
configure FIR coefficients, by adjusting the number of segments belonging to the pre-cursor,
main, and post-cursor taps. The driver segment selection (NAND and NOR gates) is placed
at the first stage of the pre-driver to minimize redundant switching power due to data
transition [12]. On the other hand, the replica segment selection is simply realized by
connecting the gate to the regulated supply voltage or ground voltage without considering
the data transition; as a result, a simple inverter in the regulated supply domain serves
as the segment selection. For both regulators, simple one-stage differential amplifiers
are used as the operational transconductance amplifiers. The dominant pole is placed
at the gate of the pass transistor for both regulators, to stabilize the negative feedback
loop with a reasonable size of the stabilizing capacitor which is placed at the output of
the amplifier. The simulated power-supply rejection ratios (PSRR) of both regulators are
shown in Figure 3. Because the dominant pole is placed at the gate of the pass transistor,
a zero is introduced in the PSRR curve [26]. This is acceptable for this work, where the
primary role of the regulators is to control the impedance, whereas the PSRR is a secondary
benefit. In addition, the dominant pole is placed at a low enough frequency across all
configurations (i.e., at least 10× lower frequency over the second pole), which confirms
that the loop is stable regardless of the configurations.
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regulator across regulator segment configuration.

3. Measurement Results

The proposed PCIe Gen4 transmitter is fabricated in a 28 nm low-power CMOS
technology and occupies an active area of 0.023 mm2, while the full chip occupies 1 mm2.
The chip photomicrograph and block description are shown in Figure 4. The prototype chip
is wire-bonded on the test printed circuit board (PCB). The transmitter dissipates 30.8 mW
at 16 Gb/s including all the interface buffers, bias circuits, and built-in self-test circuitry.
Figure 5 shows the power breakdown at various data rates with nominal supply voltage
and output swing configuration. Owing to the CMOS-based circuit implementation, the
power consumption by the data generation, data buffers, and clock distribution is almost
linearly scaled with the data rate. On the other hand, the power consumption of the
output SST driver and the regulators is not scaled because they belong to the signaling
and static power categories in Figure 1. However, this can be improved by lowering
HVDD as the regulator headroom requirement is relaxed at a lower data rate. Figure 6
shows the measured eye diagrams at 8 Gb/s data rate with a low-loss channel, with
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respect to the three-tap FIR configuration, which verifies the proper operation of three-tap
FIR equalization.
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Because the supply regulators provide background calibration of the output impedance,
the transmitter provides constant output impedance regardless of the FIR configuration;
hence, the measured return loss of the prototype transmitter chip is less than −10 dB across
all the frequencies of interest and passes the return loss specification of PCIe Gen4, as
shown in Figure 7. In particular, the measured return loss at low frequency is less than
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−32 dB, which is equivalent to the impedance mismatch of less than 2.5 Ω, validating the
impedance calibration method based on the supply regulators. In addition, as mentioned
in the Section 2, the relaxed ESD requirement due to the stacked output driver improves
the high-frequency return loss. A practical lossy channel is used to fully verify the effect of
three-tap FIR equalization. Figures 8 and 9 show the measured insertion loss (S21) of the
lossy channel and the eye diagrams at 16 Gb/s with the lossy channel, respectively. With
9.6 dB channel loss at the Nyquist frequency (8 GHz), no residual ISI is found from the
eye diagram with three-tap FIR equalization, which verifies that the proposed transmitter
provides a sufficient compensation at Nyquist frequency larger than 9.5 dB, which is re-
quired from the PCIe Gen4 specification. In addition, we observe that the three-tap FIR
equalizer gives a better eye opening compared to two-tap configuration, which justifies the
implementation of the three-tap FIR. Figure 10 shows the output voltage swing measured
with a Tektronix P7313 differential SMA probe module. The transmitter achieves the output
swing of 800 mVpeak-to-peak,differential.
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The performance of the fabricated transmitter is summarized and compared to other
supply-scalable, wide-range transmitters in Table 1. Compared to the reference designs, the
proposed transmitter achieves the best energy efficiency except for [13]. However, on-chip
supply scaling is missing in [13]; consequently, it does not reflect the power overhead of
on-chip supply scaling, such as the voltage dropout by a linear regulator or finite efficiency
and switching noise of a switching regulator. As a result, considering that a substantial



Electronics 2021, 10, 68 9 of 10

portion of the power is dissipated by the dropout of regulators, we can conclude that the
proposed transmitter achieves the best efficiency among the supply-scalable transmitters.

Table 1. Performance comparison.

Process
(nm)

Min. Rate
(Gb/s)

Max. Rate
(Gb/s) Equalizer Clocking Supply

Scaling

Min. TX
Swing
(Vppd)

Max. TX
Swing
(Vppd)

Power (mW)
@Max Rate

Area
(mm2)

FoM (pJ/bit)
@Max Rate

[7] 65 3 8
3-tap FFE

(feed-forward
equalizer)

Half rate DC–DC +
regulator N/A N/A 38.4 N/A 4.8

[8] 65 3 16
PWM

(pulse-width
modulation)

Quarter
rate

External
source N/A N/A 38.78 N/A 2.42

[9] 350 0.2 0.8 None Half rate DC–DC 0.1 0.15 21.5 N/A 26.875

[10] 250 0.65 5 None 1/5 rate DC–DC 0.1 0.3 216.6 N/A 43.3

[11] 65 5 15 3-tap FFE Half rate External
source 0.1 0.72 34 0.033 2.3

[12] 65 5 32 2-tap FFE Quarter
rate

On-chip
regulator 0.4 1.3 87.7 0.17 2.74

[13] 32 2 16 3-tap FFE Quarter
rate

External
source 0.36 0.5 25 0.014 1.56

This
work 28 2.5 16 3-tap FFE Half rate On-chip

regulator 0.5 0.8 30.82 0.023 1.93

4. Conclusions

A PCIe Gen4 PHY transmitter fabricated in a 28 nm CMOS was presented. The trans-
mitter adopts supply voltage scaling to improve energy efficiency across a wide range using
the on-chip supply regulators. The fabricated chip satisfies all the specifications of PCIe
Gen4, including data rates, output swing, equalization, and return loss. The transmitter
consumes 30.8 mW at 16 Gb/s and occupies an active area of 0.023 mm2.
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