
electronics

Article

A Period-Aware Routing Method for IEEE 802.1Qbv
TSN Networks

Kai Huang 1, Jingkang Wu 1, Xiaowen Jiang 1,* , Dongliang Xiong 2, Kaitian Huang 3, Hao Yao 4, Wenyuan Xu 2,
Yonggang Peng 2 and Zhili Liu 5

����������
�������

Citation: Huang, K.; Wu, J.; Jiang, X.;

Xiong, D.; Huang, K.; Yao, H.; Xu, W.;

Peng, Y.; Liu, Z. A Period-Aware

Routing Method for IEEE 802.1Qbv

TSN Networks. Electronics 2021, 10,

58. https://doi.org/10.3390/

electronics10010058

Received: 14 December 2020

Accepted: 28 December 2020

Published: 31 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of VLSI Design, Zhejiang University, Hangzhou 310027, China; huangk@vlsi.zju.edu.cn (K.H.);
21860243@zju.edu.cn (J.W.)

2 Department of Electrical Engineering, Zhejiang University, Hangzhou 310027, China;
xiongdl@zju.edu.cn (D.X.); wyxu@zju.edu.cn (W.X.); pengyg@zju.edu.cn (Y.P.)

3 Electric Power Research Institute, China Southern Power Grid (CSG), Guangzhou 510623, China;
huangkt@csg.cn

4 Digital Grid Research Institute, China Southern Power Grid (CSG), Guangzhou 510670, China; yaohao@csg.cn
5 Hangzhou Sec-Chip Technology Co., Ltd., Hangzhou 310012, China; liuzhili@sec-chip.com
* Correspondence: xiaowen_jiang@zju.edu.cn

Abstract: The IEEE 802.1Qbv standard provides deterministic delay and low jitter guarantee for
time-critical communication using a precomputed cyclic transmission schedule. Computing such
transmission schedule requires routing the flows first, which significantly affects the quality of the
schedule. So far off-the-shelf algorithms like load-balanced routing, which minimize the maximum
scheduled traffic load (MSTL), have been used to accommodate more time-triggered traffic. However,
they do not consider that the bandwidth utilization of periodic flows is decentralized and their criteria
for bottleneck of scheduling are imprecise. In this paper, we firstly explore the combinability among
different periods of flows, which can measure their ability to share bandwidth without conflict. Then,
we propose a novel period-aware routing algorithm to reduce the scheduling bottleneck, thus more
flows can be accommodated. The experiment results show that the success rate of scheduling is
significantly improved compared to shortest path routing and load balanced routing.

Keywords: IEEE 802.1Qbv; TSN; routing algorithms; period-aware; schedulability

1. Introduction

In the field of industrial control and automotive networks, critical traffic such as real-
time control information requires bound low delay and low jitter. However, the traditional
Ethernet lacks the guarantee of real-time and certainty of communication. Although the
rising real-time Ethernet can provide certain guarantees in real-time and certainty, there are
some defects such as inconsistent standards and unclear development direction [1–4].
To address this limitation, the IEEE time sensitive network (TSN) task group has developed
a set of unified standards based on AVB (audio video bridging) protocol, which is not
only compatible with traditional Ethernet, but also ensures real-time performance and low
jitter. These standards consist of time synchronization, paths selection, path reservation,
fault tolerance, scheduling, traffic shaping and so on [5,6]. As part of the TSN standards,
it is committed to providing deterministic network delay and low jitter guarantee for time
triggered (periodic) traffic flow in real-time control, and can be compatible with best-effort
flows and AVB flows [7].

To realize the time-aware scheduling defined in 802.1Qbv, precise time synchronization
protocols, such as IEEE 802.1AS, are required. Such protocols enable all bridges and end
stations in the network to synchronize their local clocks with an accuracy of less than
1 µs. A pre-computed communication schedule is sent to every end station in the system,
instructing them when to send which frame to the network, and the end station executes
the communication schedule precisely [8–10]. In this way, communication interference

Electronics 2021, 10, 58. https://doi.org/10.3390/electronics10010058 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6283-2262
https://orcid.org/0000-0002-0960-3807
https://www.mdpi.com/2079-9292/10/1/58?type=check_update&version=1
https://doi.org/10.3390/electronics10010058
https://doi.org/10.3390/electronics10010058
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10010058
https://www.mdpi.com/journal/electronics

Electronics 2021, 10, 58 2 of 19

occurring in standard Ethernet can be prevented, and definite delays and low jitter can be
guaranteed during message delivery. Such a mechanism is usually implemented as offline
scheduling because of the large amount of computation [11,12].

Generally, the TSN traffic control mechanism can be considered from two aspects:
(1) the scheduling (i.e., when to send which frame to be transmitted); and (2) the routing
(i.e., selecting a path from source to destination for each flow) [13]. With regard to the
scheduling problem, some formulas or restrictions that meet the time requirements are
usually introduced, and are solved by integer linear programming (ILP) and satisfiable
modular theory (SMT) [14]. Such a scheduling task is an NP-hard problem [15], and thus,
solving routing and scheduling problems jointly [8] is too complex to meet the computing
time limit for large-scale networks. Therefore, the typical solution is to solve the routing
problem first and then the scheduling problem.

Usually, the same off-the-shelf algorithms, which are used for routing best-effort
traffic, are used to route time-triggered flows. As with shortest path routing, it minimizes
the number of hops for routing traffic [16]. These strategies may result in too many flows
trying to simultaneously traverse the same path, reducing the schedulability of the set
of time-triggered flows. Naresh et al. proposed an ILP (integer linear programming)
based routing algorithm to reduce maximum scheduled traffic load (MSTL), and thus
improve the schedulability [5]. Furthermore, since the runtime of ILP based algorithms is
very high, the authors of literatures [3,4] developed a heuristic to reduce MSTL, respectively.
However, they did not take different periods of flows into account, hence not being available
for time-triggered flows with different periods. Literatures [6,8] considered “period” as a
factor in choosing the path, but they omitted that bandwidth utilization of periodic flows
is dispersed, which is essential to precisely evaluate the scheduling bottleneck. To the best
of our knowledge, there is no work on TSN routing that pays attention to the difference in
sharing bandwidth between different periods of flows.

In this article, we address the following research question: How to improve the
schedulability of time-triggered flows in routing stage? To get over the aforementioned
hurdles and better address this issue, we therefore make the following contributions:

• We first analyze the combinability among various periods of flows and show the
ability of different periods of flows to utilize the decentralized bandwidth.

• We introduce a new metric to measure the bottleneck of scheduling. Moreover,
we propose a period-aware routing algorithm for time-triggered flows and improve
their schedulability.

• Finally, we evaluate the proposed algorithm from three dimensions: Load, topology and
flow type. The experiment results demonstrate that our method can achieve higher
schedulability compared to the shortest path algorithm and the load balanced algorithm.

The rest of the paper is organized as follows. The related work is discussed in Section 2.
In Section 3, we describe the system model and the problem under consideration. Then the
motivation case is presented in Section 4. In Section 5, we analyze the combinability
among flows in detail, based on which we proposed a period-aware routing algorithm for
time-triggered flows. We evaluate our algorithm using an ILP-based schedule platform in
Section 6. Finally, we conclude in Section 7.

2. Related Work

Routing algorithms have been well studied and some advanced results have been
proposed [17,18]. Nevertheless, the contributions to TSN routing schemes only gradually
emerged ten years ago [3]. Rapid spanning tree protocol and shortest path algorithm
are widely used for TSN, adopting the convention of typical Ethernet [19]. Furthermore,
the IEEE 802.1Qca provides explicit control over routing and mechanisms and recom-
mends constrained shortest path first routing for TSN transmissions [20,21]. However,
as previously described, shortest path routing is likely to reduce the schedulability for
time-triggered flows.

Electronics 2021, 10, 58 3 of 19

In recent studies, some works [22,23] extended the routing problem to the topology
planning problem. While in practical applications, the greater demand is to find the best
routing scheme based on the given topology. In addition, some researches [8,24] focused
on jointly solving the routing problem and scheduling problem. Although such a method
can achieve better scheduling quality, it is too time-consuming for large-scale networks.
Consequently, most of the methods are to solve the routing problem first, and then solve
the scheduling problem.

There are many optimization goals for routing problems, such as scalability, slack,
delay, et cetera [25–27], but the core issue is schedulability, because if schedulability cannot
be guaranteed, other indicators become meaningless. In terms of schedulability, the main
consideration is how to distribute the load as evenly as possible. This is the so-called
load balance. Arif and Atia [28] proposed a load balanced routing model for TSN, but it
focused on improving the circuit delay rather than schedulability. Nayak et al. [5] proposed
two ILP-based routing algorithms to optimize the MSTL. However, the runtimes of the
ILP-based method are too long, and thus detrimental to scalability. Load balanced routing
heuristics are developed in literature [3,4], but they did not consider different periods
of flows. Therefore, it does not meet the needs of practical application where different
control devices transmit the messages at different frequencies. Although “period” has
been considered as a factor for path selection in literatures [6,8], they did not recognize the
decentralized bandwidth utilization of periodic flows and they just changed the metric to
evaluate MSTL by taking “period” into account. Therefore, these methods are not accurate
in measuring the scheduling bottleneck. In contrast, we find that flows with different
periods have different abilities to utilize the dispersed bandwidth, and use the concept
“combinability” to evaluate it. By carefully analyzing the combinability among flows with
different periods, we propose a heuristic to reduce the scheduling bottleneck and increase
the probability of a set of time-triggered flows to be successfully scheduled.

3. System Model and Problem Definition

In this section, we present our system model and the problem that we focus on.
The main notations that we use are listed in Table 1.

Table 1. The main notations that we use.

Notation Explanation

src The source node of a flow.
dst The destination node of a flow.

siz The size of a flow measured by the length of time
consumed during propagation.

prd The cycle period of a flow.
MSTL The maximum scheduled traffic load.
LCM The least common multiple of the periods of all flows.
GCD The greatest common divisor of the periods of all flows.
BWu The used bandwidth.
BWt The total bandwidth,
BWr The residual bandwidth.
num The number of flows that can be accommodated.
wgt The specific weight of a flow.

SOW Sum of wgt.
MSOW The maximum sum of wgt.

hops The number of edge/link in a path.

3.1. System Model

We model the time-sensitive network as a directed graph G = (V, E), where the set
V = ES ∪ S consists of a finite set ES of end stations and S of switches or bridges, and the
set E = {(vi, vj) | vi, vj ∈ V, and vi, vj are connected.} includes a set of full duplex edges or
links. Note that each full duplex edge is regarded as two separate directional edges (vi,

Electronics 2021, 10, 58 4 of 19

vj) and (vj, vi), where the former node is the source and the latter node is the destination.
We assume the whole network is precisely synchronized. An example of network topology
is shown in Figure 1.

Electronics 2021, 10, x FOR PEER REVIEW 4 of 19

3.1. System Model
We model the time-sensitive network as a directed graph G = (V, E), where the set V

= ES ∪ S consists of a finite set ES of end stations and S of switches or bridges, and the set
E = {(vi, vj) | vi, vj ∈ V, and vi, vj are connected.} includes a set of full duplex edges or
links. Note that each full duplex edge is regarded as two separate directional edges (vi, vj)
and (vj, vi), where the former node is the source and the latter node is the destination. We
assume the whole network is precisely synchronized. An example of network topology is
shown in Figure 1.

ES0

S0ES1

ES2

S2

S1

S4 S3

ES3

ES4

ES5

Figure 1. Sample network topology consisting of six end stations and five bridges.

A set of unicast time-triggered flows F is considered and the flow mentioned later
refers to time-triggered flows in default. These flows are transmitted within their own
cycle and the hyper cycle (the least common multiple of the periods of all flows). When
all flows are released simultaneously, we can safely restrict our attention to a single hyper
cycle (the first one) [3]. Each flow ∈ F is denoted by a 4-tuple f ≡ (src, dst, siz, prd), where
src, dst ∈ V are the flow’s source and destination node, respectively. Siz defines the size
of the flow by the length of time consumed during propagation. For example, the band-
width of TSN is 100 Mb/s and the length of the flow is 100 Byte, then the “siz” for the flow
is 8 μs. Moreover, prd is the cycle period of the flow. For simplicity, we assume the mini-
mum time unit of our system is 1 μs and the unit for siz and prd is microsecond by default.
Since we mainly focus on the schedulability rather than latency, we assume that any valid
solution meets the flow’s deadline.

3.2. Problem Definition
The considered flows must be transmitted based on a commonly used no-wait sched-

ule [5,6,15]. Given the network topology and a set of flows with different periods, the
routing algorithm finds a path for every given flow from its source to destination, aiming
to improve the success rate of scheduling.

4. Motivation Example
In this section, we analyze the shortcomings of the existing load balanced routing

algorithm [1,3,4] to better illustrate our motivation.
When selecting the path for a flow, we mainly focus on how to reduce the bandwidth

utilization of the bottleneck edge. Maximum scheduled traffic load (MSTL) is regarded as
the bottleneck in existing methods [3–5] and they proposed different algorithms to mini-
mize the MSTL, which is computed as 𝑀𝑇𝑆𝐿 = max (𝑠𝑖𝑧) (1)

or

Figure 1. Sample network topology consisting of six end stations and five bridges.

A set of unicast time-triggered flows F is considered and the flow mentioned later
refers to time-triggered flows in default. These flows are transmitted within their own cycle
and the hyper cycle (the least common multiple of the periods of all flows). When all flows
are released simultaneously, we can safely restrict our attention to a single hyper cycle
(the first one) [3]. Each flow ∈ F is denoted by a 4-tuple f ≡ (src, dst, siz, prd), where src,
dst ∈ V are the flow’s source and destination node, respectively. Siz defines the size of the
flow by the length of time consumed during propagation. For example, the bandwidth of
TSN is 100 Mb/s and the length of the flow is 100 Byte, then the “siz” for the flow is 8 µs.
Moreover, prd is the cycle period of the flow. For simplicity, we assume the minimum time
unit of our system is 1 µs and the unit for siz and prd is microsecond by default. Since we
mainly focus on the schedulability rather than latency, we assume that any valid solution
meets the flow’s deadline.

3.2. Problem Definition

The considered flows must be transmitted based on a commonly used no-wait sched-
ule [5,6,15]. Given the network topology and a set of flows with different periods, the rout-
ing algorithm finds a path for every given flow from its source to destination, aiming to
improve the success rate of scheduling.

4. Motivation Example

In this section, we analyze the shortcomings of the existing load balanced routing
algorithm [1,3,4] to better illustrate our motivation.

When selecting the path for a flow, we mainly focus on how to reduce the bandwidth
utilization of the bottleneck edge. Maximum scheduled traffic load (MSTL) is regarded
as the bottleneck in existing methods [3–5] and they proposed different algorithms to
minimize the MSTL, which is computed as

MTSL = max(∑ siz) (1)

or
MTSL = max(∑ siz× LCM/prd) (2)

Since we only focus on how the flows are transmitted within a hyper cycle, the hyper
cycle can be regarded as the total bandwidth and it will be allocated to the flows. Actually,
Equation (2) computes the maximum bandwidth used in a hyper cycle. Letting BWu be the
used bandwidth, we have

BWu = ∑ siz× LCM/prd (3)

Electronics 2021, 10, 58 5 of 19

According to existing methods, the smaller the MSTL is, the more bandwidth is left,
and the more flows it can hold, because they assume that the remaining bandwidth can be
fully utilized. As is shown in Figure 2a, it is reasonable when the cycle is not considered and
the flows can be tightly bunched. Nevertheless, when we take the cycle into consideration,
it is inappropriate to use the residual bandwidth to measure the capacity to accommodate
flows, because they are decentralized as is shown in Figure 2b. Therefore, the remaining
bandwidth may be useless for some flows.

Electronics 2021, 10, x FOR PEER REVIEW 5 of 19

𝑀𝑇𝑆𝐿 = max (𝑠𝑖𝑧 × 𝐿𝐶𝑀/𝑝𝑟𝑑) (2)

Since we only focus on how the flows are transmitted within a hyper cycle, the hyper
cycle can be regarded as the total bandwidth and it will be allocated to the flows. Actually,
Equation (2) computes the maximum bandwidth used in a hyper cycle. Letting BWu be
the used bandwidth, we have 𝐵𝑊 = 𝑠𝑖𝑧 × 𝐿𝐶𝑀/𝑝𝑟𝑑 (3)

According to existing methods, the smaller the MSTL is, the more bandwidth is left,
and the more flows it can hold, because they assume that the remaining bandwidth can
be fully utilized. As is shown in Figure 2a, it is reasonable when the cycle is not considered
and the flows can be tightly bunched. Nevertheless, when we take the cycle into consid-
eration, it is inappropriate to use the residual bandwidth to measure the capacity to ac-
commodate flows, because they are decentralized as is shown in Figure 2b. Therefore, the
remaining bandwidth may be useless for some flows.

Time/usF1 F3
0 1 2 3 4 5 6 7

F4
8 9 10 11 12 13 14 15 16 17 18

F2

The residual bandwidth

Initial state:

Potential flows:
F5

F6 F7 F8

(a)

Time/usF1 F2 F3 F1 F1
0 1 2 3 4 5 6 7

F2 F1
8 9 10

F3 F1 F2 F1
11 12 13 14 15 16 17 18

The residual bandwidth

Initial state:

F5

F7

Potential flows:

F5

F6

F5

F6 F6 F6F6

(b)

Figure 2. (a) The residual bandwidth and potential flows for aperiodic flows; (b) the residual
bandwidth and potential flows for periodic flows.

Let BWt be the total bandwidth, the theoretical residual bandwidth (denoted as BWr)
can be computed as 𝐵𝑊 = 𝐵𝑊 − 𝐵𝑊 (4)

Figure 2. (a) The residual bandwidth and potential flows for aperiodic flows; (b) the residual bandwidth and potential
flows for periodic flows.

Let BWt be the total bandwidth, the theoretical residual bandwidth (denoted as BWr)
can be computed as

BWr = BWt − BWu (4)

For aperiodic flows, it can be calculated that BWr = 8 in Figure 2a, which means that it
can accommodate a flow with siz up to 8 or several flows with a total siz up to 8. While for
periodic flows shown in Figure 2b, it can be calculated that BWr = 7 according to Equation
(4). Three potential flows are added: (1) F5: siz = 1, prd = 6; (2) F6: siz = 1, prd = 3; (3) F7:
siz = 3, prd = 18, whose BWu are 3, 6, 3 respectively. It is obvious that they are all less than
BWr, but only F5 can be accommodated.

This shows that more bandwidth remaining does not mean that more flows can be
accommodated. The capacity of different flows to utilize specific remaining bandwidth is
different. In other words, some flows are not prone to conflict when sharing the same edge,
while others are prone to conflict. Existing methods only focus on bandwidth distribution

Electronics 2021, 10, 58 6 of 19

and ignore this characteristic of different flows. Therefore, we need a new criterion to show
whether a specific flow can be accommodated on an edge.

5. Proposed Solution

In this section, we propose a period-aware routing heuristic for time-triggered flows.
“Period-aware” means that the period of the flow is regarded as the essential element of
path selection. First of all, we proposed the concept of combinability, which helps us to
understand the ability of different periods of flows to share bandwidth without conflict.
After that we analyze the combinability of different periods of flows and put forward a
new metric to measure the bottleneck of scheduling. Then we give an example to illustrate
the advantages of our method compared to the load balanced algorithm proposed in
literature [3]. Finally, the procedure of our algorithm is described in detail.

5.1. The Combinability of Different Periods of Flows

When more than one time-triggered flow is passing through the same edge, the schedul-
ing algorithm must assure that the transmission time for these flows is not overlapped
to avoid congestion on that edge [2]. We put forward the concept of “combinability”
to measure the capacity of flows to share bandwidth without conflict. More specifically,
high combinability means that flows transmitted via the same edge are not likely to con-
gest, bandwidth can be used more fully and this edge is able to accommodate more flows.
It should be pointed out that when flows pass through the same edge, the following two
restrictions need to be met:

• The transmission times of flows are not overlapped in one hyper cycle [6].
• The first frame of each flow should be sent within its own period [5].

5.1.1. Examples for Different Combinability

For example, there are two flows passing through the same edge: (1) F1: siz = 1, prd = 3;
(2) F2: siz = 1, prd = 6. The hyper cycle of these two flows is 6, which means that we only
need to care about time 0 to time 6. Supposing F1 is sent at time 0, the possible situations
of how F2 is transmitted under the above restrictions is shown in Figure 3.

Electronics 2021, 10, x FOR PEER REVIEW 6 of 19

For aperiodic flows, it can be calculated that BWr = 8 in Figure 2a, which means that
it can accommodate a flow with siz up to 8 or several flows with a total siz up to 8. While
for periodic flows shown in Figure 2b, it can be calculated that BWr = 7 according to Equa-
tion (4). Three potential flows are added: (1) F5: siz = 1, prd = 6; (2) F6: siz = 1, prd = 3; (3)
F7: siz = 3, prd = 18, whose BWu are 3, 6, 3 respectively. It is obvious that they are all less
than BWr, but only F5 can be accommodated.

This shows that more bandwidth remaining does not mean that more flows can be
accommodated. The capacity of different flows to utilize specific remaining bandwidth is
different. In other words, some flows are not prone to conflict when sharing the same edge,
while others are prone to conflict. Existing methods only focus on bandwidth distribution
and ignore this characteristic of different flows. Therefore, we need a new criterion to
show whether a specific flow can be accommodated on an edge.

5. Proposed Solution
In this section, we propose a period-aware routing heuristic for time-triggered flows.

“Period-aware” means that the period of the flow is regarded as the essential element of
path selection. First of all, we proposed the concept of combinability, which helps us to
understand the ability of different periods of flows to share bandwidth without conflict.
After that we analyze the combinability of different periods of flows and put forward a
new metric to measure the bottleneck of scheduling. Then we give an example to illustrate
the advantages of our method compared to the load balanced algorithm proposed in lit-
erature [3]. Finally, the procedure of our algorithm is described in detail.

5.1. The Combinability of Different Periods of Flows
When more than one time-triggered flow is passing through the same edge, the

scheduling algorithm must assure that the transmission time for these flows is not over-
lapped to avoid congestion on that edge [2]. We put forward the concept of “combinabil-
ity” to measure the capacity of flows to share bandwidth without conflict. More specifi-
cally, high combinability means that flows transmitted via the same edge are not likely to
congest, bandwidth can be used more fully and this edge is able to accommodate more
flows. It should be pointed out that when flows pass through the same edge, the following
two restrictions need to be met:

• The transmission times of flows are not overlapped in one hyper cycle [6].
• The first frame of each flow should be sent within its own period [5].

5.1.1. Examples for Different Combinability
For example, there are two flows passing through the same edge: (1) F1: siz = 1, prd =

3; (2) F2: siz = 1, prd = 6. The hyper cycle of these two flows is 6, which means that we only
need to care about time 0 to time 6. Supposing F1 is sent at time 0, the possible situations
of how F2 is transmitted under the above restrictions is shown in Figure 3.

F1 F2 F1

0 1 2 3 4 5 6 7
Time/us

F1 F2 F1

0 1 2 3 4 5 6 7
Time/us

F1 F1 F2

0 1 2 3 4 5 6 7
Time/us

F1 F1 F2

0 1 2 3 4 5 6 7
Time/us

Situation 1:

Situation 2:

Situation 3:

Situation 4:

Figure 3. Possible situations for F2 when F1 sent at time 0. Figure 3. Possible situations for F2 when F1 sent at time 0.

The figure shows that there are up to four feasible sending methods for F2. Moreover,
it is not difficult to find out that the edge can accommodate up to four F2 and bandwidth
can be fully used. Therefore, there is a high combinability between F1 and F2.

Instead, we consider these two flows: (1) F3: siz = 1, prd = 3; (2) F4: siz = 1, prd = 6.
The hyper cycle is 12 and the possible situations for F4 is shown in Figure 4 assuming F3 is
sent at time 0.

Electronics 2021, 10, 58 7 of 19

Electronics 2021, 10, x FOR PEER REVIEW 7 of 19

The figure shows that there are up to four feasible sending methods for F2. Moreover,
it is not difficult to find out that the edge can accommodate up to four F2 and bandwidth
can be fully used. Therefore, there is a high combinability between F1 and F2.

Instead, we consider these two flows: (1) F3: siz = 1, prd = 3; (2) F4: siz = 1, prd = 6. The
hyper cycle is 12 and the possible situations for F4 is shown in Figure 4 assuming F3 is
sent at time 0.

Situation 1:
0

F3 F4 F3 F4 F3
1 2 3 4 5 6 7

Time/us
8 9 10 11 12 13

0

F3 F4 F3
1 2 3 4 5 6 7

Time/us
F3 F4

8 9 10 11 12 13

F3 & F4

F3 & F4
Situation 2:

Figure 4. Possible situations for F4 when F3 sent at time 0.

We can see that F3 and F4 congest at time 9–10 in situation 1 while in situation 2 they
congest at time 6–7. With the first frame of F4 must sent before time 4 and not congesting
with F3, there is no other situation for F4 to be transmitted, which means that the two
flows are bound to conflict. Consequently, there is poor combinability (bandwidth utili-
zation is zero) between them and it is not suitable for them to pass through the same edge.

5.1.2. Analysis of the Combinability between Two Flows
From the above examples, we have a preliminary understanding of different com-

binability. In this section, we analyze the combinability between two flows with different
periods in more depth.

In the following analysis, we assume that the siz of all the flows are “1” and explore
how many other flows can be accommodated when a certain stream exists on the edge.
Specifically, as the first example shown in Section 5.1.1, four F2 can be accommodated
when an F1 exists. Obviously, we can use this number to measure the combinability be-
tween two flows, or whether it is suitable for the latter flow to be transmitted via the spe-
cific edge, which we can use to select path for the flow.

Without loss of generality, we assume that flow1 with prd = p1 has been assigned to
be transmitted through an edge at time 0. Then we analyze how many feasible situations
for flow2 with prd = p2 are sent through the edge without congestion. We denote the time
offset of the first frame of flow2 to be sent as a, and we get 0 ≤ a < p2 under the transmitting
time limitation. Then the sending time for flow1 and flow2 would be n×p1 and (a + m ×
p2), where m and n are integers (denoted as N). If the two flows congest at an edge, the
following equation can be obtained: 𝑛 × 𝑝1 = 𝑎 + 𝑚 × 𝑝2, (5)

and such that: 𝑎 = 𝑛 × 𝑝1 − 𝑚 × 𝑝2. (6)

Assuming the greatest common divisor (GCD, GCD also means the GCD of periods
in this paper) of p1 and p2 is g, we have ∃𝑚 , 𝑛 ∈ 𝑁, 𝑝1 = 𝑛 × 𝑔, 𝑝2 = 𝑚 × 𝑔, (7)

where the GCD of n0 and m0 is “1”, otherwise g cannot be the GCD of p1 and p2. Addition-
ally, a is computed as 𝑎 = 𝑛 × 𝑛 × 𝑔 − 𝑚 × 𝑚 × 𝑔 = (𝑛 × 𝑛 − 𝑚 × 𝑚) × 𝑔. (8)

Figure 4. Possible situations for F4 when F3 sent at time 0.

We can see that F3 and F4 congest at time 9–10 in situation 1 while in situation 2 they
congest at time 6–7. With the first frame of F4 must sent before time 4 and not congesting
with F3, there is no other situation for F4 to be transmitted, which means that the two flows
are bound to conflict. Consequently, there is poor combinability (bandwidth utilization is
zero) between them and it is not suitable for them to pass through the same edge.

5.1.2. Analysis of the Combinability between Two Flows

From the above examples, we have a preliminary understanding of different com-
binability. In this section, we analyze the combinability between two flows with different
periods in more depth.

In the following analysis, we assume that the siz of all the flows are “1” and explore
how many other flows can be accommodated when a certain stream exists on the edge.
Specifically, as the first example shown in Section 5.1.1, four F2 can be accommodated when
an F1 exists. Obviously, we can use this number to measure the combinability between two
flows, or whether it is suitable for the latter flow to be transmitted via the specific edge,
which we can use to select path for the flow.

Without loss of generality, we assume that flow1 with prd = p1 has been assigned to
be transmitted through an edge at time 0. Then we analyze how many feasible situations
for flow2 with prd = p2 are sent through the edge without congestion. We denote the
time offset of the first frame of flow2 to be sent as a, and we get 0 ≤ a < p2 under the
transmitting time limitation. Then the sending time for flow1 and flow2 would be n × p1
and (a + m × p2), where m and n are integers (denoted as N). If the two flows congest at an
edge, the following equation can be obtained:

n× p1 = a + m× p2, (5)

and such that:
a = n× p1−m× p2. (6)

Assuming the greatest common divisor (GCD, GCD also means the GCD of periods in
this paper) of p1 and p2 is g, we have

∃m0, n0 ∈ N, p1 = n0 × g, p2 = m0 × g, (7)

where the GCD of n0 and m0 is “1”, otherwise g cannot be the GCD of p1 and p2. Addition-
ally, a is computed as

a = n× n0 × g−m×m0 × g = (n× n0 −m×m0)× g. (8)

As n, n0, m and m0 are integers, it can be concluded that a is an integral multiple of g.
Then we explore the possible values for a, before which we quote the famous Bézout’s
identity [29]:

“For nonzero integers a and b, let d be the greatest common divisor d = gcd(a,b).
Then, there exist integers x and y such that: ax + by = d.”

Electronics 2021, 10, 58 8 of 19

Apparently, n0 and m0 are nonzero integers. Where the GCD of n0 and m0 is “1” and
(n × n0 − m × m0) is a linear combination of n0 and m0, we can deduce that

∃m1, n1 ∈ N, n1 × n0 −m1 ×m0 = 1. (9)

Note that m and n can be any integer. From Equations (8) and (9), we get

∀k ∈ N, ∃m, n ∈ N, a = (n ∗ n0 −m ∗m0) ∗ g = k ∗ (n1 ∗ n0 −m1 ∗m0) ∗ g = k ∗ g, (10)

only when
n = k× n1, m = k×m1. (11)

By Equation (10), the value range of a (denoted as A) is

A ≡ {0 ≤ a < p2 | a = k× g, k ∈ N} ≡ {0, g, 2g, . . . , p2− g}. (12)

Therefore, the number of possible values for a are p2/g. In other words, the number of
situations in which the two flows do not congest is (p2 − p2/g). More generally, let num be
the number of flows that can be accommodated, such that:

num = prd− prd/GCD. (13)

From the above discussion, we find an expression that can evaluate the combinability
between two flows when their siz are both “1”. As for the situations when siz is an arbitrary
integer, considering that siz is generally much smaller than prd in real application scenarios,
we can roughly treat a flow with siz = n as n flows with siz = 1. Then, num is computed as

num = b(prd− prd/GCD)/sizc. (14)

Since prd and siz are the properties of the flow itself, GCD is the determinant of the
combinability of two flows.

5.1.3. Combinability among Multiple Flows

The above analysis points out the combinability between two flows and the upper
limit that can accommodate one flow when the other flow exists, but it is not enough to
select a path for a newly added flow. A metric that can be applied to a real-world scenario,
where multiple periods of flows are transmitted via a same edge, is needed.

Equation (13) indicates the maximum number of flows that can be accommodated
when the other flow exists and siz are both “1”. By converting this number to the specific
weight (denoted as wgt) of each flow, we get

wgt = 1/num = 1/(prd − prd
GCD

). (15)

As for the situation when siz is an arbitrary value, by Equation (14), we have

wgt = 1/num = siz/(prd − prd
GCD

). (16)

Then the sum of wgt (denoted ad SOW) is computed as

SOW = ∑ siz/(prd − prd
GCD

). (17)

The higher the SOW, the closer to the upper limit of the flows that can be accommo-
dated, and the more difficult it is to accommodate more flows. It means that SOW can be
used to measure the scheduling bottleneck when there are flows with two kinds of periods.

Electronics 2021, 10, 58 9 of 19

Similar to MSTL, we propose using the maximum SOW (denoted as MSOW) as the
bottleneck of scheduling, and we get

MSOW = max(∑
siz

prd − prd
GCD

). (18)

As LCM is a constant for the same set of flows, comparing Equation (2) and Equation (18),
we find that there is only a difference between the two by a coefficient related to GCD.
This shows that when considering the scheduling bottleneck, not only the total load on an
edge must be considered, but also the combinability of flows passing through the same edge.
When choosing a path for a flow, we should select a path whose MSOW is the least after
adding the flow to it.

As shown in Figure 5, there are three candidate paths for F7 (prd = 6, siz = 1) to select.
Table 2 shows the SOW, TSL (scheduled traffic load according to Equation (2)) and number
of future flows that can be accommodated (NOF) after selecting different paths. It can be
seen that the smaller the SOW, the more flows it can accommodate in the future. However,
there is no such inverse relationship between TSL and NOF. It demonstrates that MSOW
is more suitable than MSTL to measure the scheduling bottleneck. Notably, if there are
two flows whose GCD is “1”, arranging the same path for them will leave the flows
unschedulable. This can be avoided by using MSOW as the metric of path selection,
but not by MSTL. Consequently, trying to lower the value of SOW helps to accommodate
more flows.

Electronics 2021, 10, x FOR PEER REVIEW 9 of 19

used to measure the scheduling bottleneck when there are flows with two kinds of peri-
ods.

Similar to MSTL, we propose using the maximum SOW (denoted as MSOW) as the
bottleneck of scheduling, and we get 𝑀𝑆𝑂𝑊 = max (∑ –). (18)

As LCM is a constant for the same set of flows, comparing Equation (2) and Equation
(18), we find that there is only a difference between the two by a coefficient related to
GCD. This shows that when considering the scheduling bottleneck, not only the total load
on an edge must be considered, but also the combinability of flows passing through the
same edge. When choosing a path for a flow, we should select a path whose MSOW is the
least after adding the flow to it.

As shown in Figure 5, there are three candidate paths for F7 (prd = 6, siz = 1) to select.
Table 2 shows the SOW, TSL (scheduled traffic load according to Equation (2)) and num-
ber of future flows that can be accommodated (NOF) after selecting different paths. It can
be seen that the smaller the SOW, the more flows it can accommodate in the future. How-
ever, there is no such inverse relationship between TSL and NOF. It demonstrates that
MSOW is more suitable than MSTL to measure the scheduling bottleneck. Notably, if there
are two flows whose GCD is “1”, arranging the same path for them will leave the flows
unschedulable. This can be avoided by using MSOW as the metric of path selection, but
not by MSTL. Consequently, trying to lower the value of SOW helps to accommodate
more flows.

Time/usF1 F2 F7 F1 F7 F1
0 1 2 3 4 5 6 7

F2 F7 F1
8 9 10

F7 F1 F2 F7 F1 F7
11 12 13 14 15 16 17 18Path 1

F1: prd = 3, siz = 1; F2: prd = 6, siz = 1

Time/us

F3 F4 F7 F7 F7 F3
0 1 2 3 4 5 6 7

F7 F7
8 9 10

F4 F7 F3 F7 F7 F7
11 12 13 14 15 16 17 18Path 2

F3: prd = 6, siz = 1; F4: prd = 9, siz = 1

Time/us

F5 F6 F7 F7 F7 F7 F5
0 1 2 3 4 5 6 7

F6 F7 F7
8 9 10

F7 F7 F5 F6 F7 F7 F7 F7
11 12 13 14 15 16 17 18Path 3

F5: prd = 6, siz = 1; F6: prd = 6, siz = 1
Figure 5. The capacity to accommodate future flows after selecting a different path for F7.

Table 2. SOW, TSL1 and NOF2 after selecting different paths.

PATH SOW TSL NOF
Path 1 1 12 1
Path 2 2/3 8 2
Path 3 3/5 9 3

1 TSL: Scheduled Traffic Load according to Equation (2). 2 NOF: Number of future flows that can
be accommodated.

5.2. The Proposed Routing Algorithm
The analysis in Section 5.1 indicates that MSOW is an appropriate metric to measure

the scheduling bottleneck, based on which we proposed a period-aware routing algorithm
(denoted as PAR). To facilitate the understanding of our algorithm, we first explain some
of the symbols used in it.

Definition 1. We denote each flow ∈ F by a 4-tuple f ≡ (src, dst, siz, prd) in Section 3, and we
add an attribute “class” (initial value is 0) to it, which is determined by our algorithm. We use

Figure 5. The capacity to accommodate future flows after selecting a different path for F7.

Table 2. SOW, TSL1 and NOF2 after selecting different paths.

PATH SOW TSL NOF

Path 1 1 12 1
Path 2 2/3 8 2
Path 3 3/5 9 3

1 TSL: Scheduled Traffic Load according to Equation (2). 2 NOF: Number of future flows that can
be accommodated.

5.2. The Proposed Routing Algorithm

The analysis in Section 5.1 indicates that MSOW is an appropriate metric to measure
the scheduling bottleneck, based on which we proposed a period-aware routing algorithm
(denoted as PAR). To facilitate the understanding of our algorithm, we first explain some
of the symbols used in it.

Definition 1. We denote each flow ∈ F by a 4-tuple f ≡ (src, dst, siz, prd) in Section 3, and we add
an attribute “class” (initial value is 0) to it, which is determined by our algorithm. We use f.prd to

Electronics 2021, 10, 58 10 of 19

represent the period of the corresponding flow, and the representation methods for other attributes
are similar.

Definition 2. Three attributes “prd_list” (initial value is {}), “gcd” (initial value is 0) and “SOW”
(initial value is 0) are added for each edge in the network. The first represents the set of periods of
all flows passing through the edge (repeated elements will be merged into one element), while the
second represents the greatest common divisor of all periods in the set. Additionally, “SOW” is the
sum of wgt mentioned in Section 5.1.3.

Definition 3. The function least_common_multiple(F) returns the least common multiple of the
periods of all flows ∈ F.

Definition 4. The function greatest_common_divisor(list) returns the greatest common divisor of
the number in list.

Definition 5. The function get_wgt(f) returns the wgt for the flow f using Equation (16).

Definition 6. The function all_simple_paths(G, src, dst) returns all simple paths in the graph G
from src to dst, where simple path is a path with no repeated modes.

5.2.1. Period-Aware Routing Algorithm

The whole procedure of the period-aware routing algorithm is presented in Algorithm 1.
In general, the algorithm consists of two stages: sorting and routing. Firstly, the flow set is
sorted according to the sub-algorithm, Sorting_the_flows. Additionally, the path is selected
for each flow in turn. When choosing a path for a flow, all the possible paths are found
in the first step (line 4). The function all_simple_paths can be easily implemented using
NetworkX [30], a popular Python language package for exploring and analyzing the network.
All possible paths are traversed and the best path for the flow is found using the procedure
Find_best_path (line 5).

Algorithm 1 Period-aware routing algorithm (PAR)

Input: Network topology G; Flows set F; Constant K
Output: Best path for each flow Path_set

1: Path_set← {}
2: Fs← Sorting_the_flows(F);
3: foreach fi ∈ Fs do
4: paths = all_simple_paths (G, flow.src, flow.dst);
5: path*← Find_best_path (G, fi, paths, K);
6: Path_set.append(path*);
7: end
8: return Path_set

5.2.2. Sorting the Flows

In order to minimize MSOW, GCD of the flows passing through the same edge should
be as large as possible. Consequently, we need to group the flows according to their impact
on GCD or combinability. For instance, a flow whose GCD with every other flow is 1 has
poor combinability with other flows, so the flow should use a separate path. Besides,
changing the GCD of an edge after adding a flow should be avoided, otherwise SOW has
to be recalculated for the previous flows. For flows that do not affect the LCM of the flows
set after removal, their prd are the factor of others and they may be the GCD of an edge.
We should route them earlier such that the GCD is not likely to change when the following
flows are added. Therefore, we divide flows into three categories:

• Class 0: The flows whose GCD with every other flow is 1;
• Class 1: The flows do not affect LCM of the flows set after removal;

Electronics 2021, 10, 58 11 of 19

• Class 2: Other flows.

Moreover, it is not likely to reduce the GCD after adding a flow with a larger period,
so we sort the flows in the order of the period from small to large. The procedures of
sorting the flows are presented in Algorithm 2 as follows. In step I (line 1), LCM of the
flows set (lcm_old) is calculated. In step II (lines 3–4), the LCM (lcm_new) is recalculated
after removing the specific flow. In step III (lines 5–11), flows are classified. If the equation
in line 5 holds, it means that the flow’s GCD with every other flow is 1, so it falls into class
0. While if lcm_new is equal to lcm_old, it is classified as the class 1 and the others will be
class 2. The above steps will be repeated until all flows are classified. Finally, in step IV
(line 14), flows are sorted from small to large according to class and period.

Algorithm 2 Sorting the flows

Input: Initial flows set F
Output: Flows set after sorted Fs

1: lcm_old = least_common_multiple(F.prd);
2: foreach fi ∈ F do
3: Remove fi from F;
4: lcm_new = least_common_multiple(F.prd);
5: if (lcm_new == lcm_old/fi.prd) then
6: fi.class = 0;
7: else if (lcm_new == lcm_old)
8: fi.class = 1;
9: else
10: fi.class = 2;
11: end
12: Append fi to F;
13: end
14: Fs← sort F by f.class and f.prd from small to large
15: return Fs

5.2.3. Find Best Path

As a core part of our approach, the Find_best_path procedure is shown in Algorithm
3. First of all, we compute the number of edges (denoted as hops) in the path (line 1).
Then MSOW of each path supposing the flow uses the path is calculated (line 3–11).
After that, we calculate the cost function for the path (line 12). It is computed as

cost = MSOW + K ∗ hops. (19)

The purpose of our algorithm is to reduce the MSOW after all flows are routed.
However, if each flow is routed to reduce MSOW as the optimization goal, a too-long path
may be chosen in the front, causing each flow to add a large load to the entire network.
For example, if we choose a path with eight edges for a flow, it will increase the load of
this flow to eight edges. In other words, using a too-long path will reduce the bandwidth
available for subsequent flows. Therefore, we introduce a user-defined positive integer K
to penalize the length of the path. After the computation of the cost, we restore the state of
the network to calculate the cost for the next path (lines 13–17). The path with the smallest
cost is taken as the optimal path after traversing all the paths. Then the network state is
changed after the flow chooses the optimal path (lines 20–24).

Electronics 2021, 10, 58 12 of 19

Algorithm 3 Find best path

Input: Network topology G; Flow f ; Paths set Paths; Constant K
Output: Best path for flow f

1: foreach path ∈ paths do
2: hops = len(path) − 1;
3: MSOW = 0;
4: foreach edge ∈ path do
5: edge.prd_list.append (f.prd);
6: wgt← Calculate wgt (edge, f);
7: edge.SOW += wgt;
8: if (SOW > MSOW) then
9: MSOW = SOW;
10: end
11: end
12: cost = MSOW + K × hops;
13: foreach edge ∈ path do
14: wgt← Calculate wgt (edge, f);
15: edge.prd_list.remove (f.prd);
16: edge.SOW = edge.SOW − wgt;
17: end
18: end
19: path*← arg min cost(path*, K);
20: foreach edge ∈ path* do
21: wgt← Calculate wgt (edge, f);
22: edge.prd_list.remove (f.prd);
23: edge.SOW += wgt;
24: end
25: return path*

As for calculating wgt, the procedure is shown in Algorithm 4. Note that the purpose
of our previous sorting algorithm is to keep the GCD of a bridge unchanged after adding a
new flow. If there is only one flow on the edge, we use the prd of the flow as GCD, which is
very likely not change in future procedures. While if the GCD of an edge change, edge.SOW
will have to be recalculated for the previous flows (lines 4–7). Although recalculating the
value will increase the complexity of the algorithm, the overall complexity of the algorithm
is not high because of the low probability of this happening. Moreover, if the GCD of an
edge is equal to 1, the value of wgt is set to a large enough integer such that the path will
not be selected. This can avoid unschedulable situations due to GCD being 1.

The four algorithms we proposed have been introduced, and then we analyze the
complexity of these algorithms. We use |F|, |N| and |E| to denote the number of flows,
nodes and edges in the graph, respectively. All flows are traversed in Algorithm 2, so the
complexity of Algorithm 2 is O(|F|). The complexity of Algorithm 4 is O(1) since there
is no loop in it. There are two layers of loops in Algorithm 3, which are the traversal of
the number of paths and the traversal of the edges in the path. We roughly estimate that
the number of paths for each flow is 2|E| and the number of edges in each path is |E|/2.
Therefore, the complexity of the Algorithm 3 is O(|E|2). As for Algorithm1, it traverses
all flows, finds all possible paths of each flow, and then selects the optimal path from
these paths. In the procedure all_simple_paths, the complexity of finding a single path for a
flow is O(|N|+|E|) and the complexity of finding all the paths is O((|N|+|E|)|E|/2).
Since |E| > |N| in our model, O((|N|+|E|)|E|/2) < O(|E|2). So we can conclude that
the complexity of the Algorithm 1 is O(|F||E|2).

Electronics 2021, 10, 58 13 of 19

Algorithm 4 Calculate wgt

Input: Edge edge, Flow f
Output: Wgt for the f on the edge

1: if (len(edge.prd_list) == 1)) then
2: edge.gcd = fi.prd;
3: else
4: new_gcd = greatest_common_divisor (edge.prd_list);
5: if (new_gcd != edge.gcd) then
6: edge.gcd = new_gcd;
7: Recalculate the edge.SOW for all the previous flows on the edge;
8: end
9: end
10: if (edge.gcd == 1) then
11: wgt = D; (D is a large enough integer.)
12: else
13: wgt = get_wgt (f);
14: end
15: return wgt

6. Experiments and Evaluation

In this section, the evaluation is conducted in terms of the percentage of successfully
scheduled flow sets compared to two baseline algorithms. The first algorithm is shortest
path routing (denoted as SPR), which is most commonly used in practical applications.
The second is a recently published load balanced routing (denoted as LBR) proposed in
literature [3]. In order to exclude the influence of irrelevant factors, we evaluated the
performance from three dimensions: load, topology and flow type. Based on the method
proposed in literatures [6], we built an ILP-based no-wait scheduling platform to evaluate
the success rate of scheduling.

6.1. Experiment Setup

The routing algorithms and scheduling platform were implemented in a Python-based
framework, where we created a network and executed the routing algorithm using the
NetworkX API and solved the ILP-based scheduling with the Gurobi Optimizer API.
The experiments were performed on a PC with an Intel Core i5-8265U processor running at
1.8 GHz and 8 GB RAM.

The topologies used in this article are quoted from literature [6,8]. As is shown in
Figure 6a, the topology quoted from literature [8] is a partial mesh topology including
12 end stations and 12 switches. While there are 4 end stations and 6 switches in the
topology quoted from literature [6], which have a slightly higher connectivity.

Two groups of candidate flows are presented in Tables 3 and 4. In the first group,
the period of each flow is a multiple of 10, which means there is high combinability between
every two flows. While there is a big difference in the combinability between two flows
and even the GCD may be 1 in the second group. The probability of being selected for F1 is
relatively low because it has low combinability with other flows. When generating a set
of flows, we first specified a group, and then randomly selected flows from it according
to their respective probabilities. Besides, the source and destination of each flow were
randomly selected. For a single test case, we generated 100 flow sets with the same number
of flows.

Electronics 2021, 10, 58 14 of 19Electronics 2021, 10, x FOR PEER REVIEW 14 of 19

ES

S

(a)

ES0 S0

ES1 ES2S2S1 S4

S3 ES3S5

(b)

Figure 6. (a) The topology quoted from literature [8] (topology 1); (b) the topology quoted from
literature [6] (topology 2).

Two groups of candidate flows are presented in Tables 3 and 4. In the first group, the
period of each flow is a multiple of 10, which means there is high combinability between
every two flows. While there is a big difference in the combinability between two flows
and even the GCD may be 1 in the second group. The probability of being selected for F1
is relatively low because it has low combinability with other flows. When generating a set
of flows, we first specified a group, and then randomly selected flows from it according
to their respective probabilities. Besides, the source and destination of each flow were
randomly selected. For a single test case, we generated 100 flow sets with the same num-
ber of flows.

Table 3. The first group of candidate flows (flow group 1).

Flow ID Prd Siz Pro.1

F1 10 1 1/6
F2 20 1 1/6
F3 30 2 1/6
F4 40 2 1/6
F5 50 3 1/6
F6 60 3 1/6

1 The probability to be selected, similarly below.

Table 4. The second group of candidate flows (flow group 2).

Flow ID Prd Siz Pro.
F1 9 1 1/10
F2 10 1 3/10
F3 20 1 3/10
F4 30 2 3/10

Figure 6. (a) The topology quoted from literature [8] (topology 1); (b) the topology quoted from
literature [6] (topology 2).

Table 3. The first group of candidate flows (flow group 1).

Flow ID Prd Siz Pro.1

F1 10 1 1/6
F2 20 1 1/6
F3 30 2 1/6
F4 40 2 1/6
F5 50 3 1/6
F6 60 3 1/6

1 The probability to be selected, similarly below.

Table 4. The second group of candidate flows (flow group 2).

Flow ID Prd Siz Pro.

F1 9 1 1/10
F2 10 1 3/10
F3 20 1 3/10
F4 30 2 3/10

6.2. Evaluation Results

A wide range of test cases was used to evaluate our algorithm. We evaluated the
performance of the proposed algorithm (PAR) and two baseline algorithms (SPR and LBR)
by the scheduling result computed by Gurobi Optimizer. The time limit for scheduling
solution was set to 1 min and solution number limit was set to 1, so there were three
possible solver outcomes:

• Solved: One sub-optimal schedule found (optimal solution is not pursued in this paper).
• Timeout: Time limit reached without a feasible schedule.
• Infeasible: Cannot be scheduled with the given flows and routes.

Electronics 2021, 10, 58 15 of 19

6.2.1. Load Dependency

Firstly, three test cases were performed to show the schedulability of the algorithms
under different network loads. They used the topology from Figure 6a (topology 1)
and flows from Table 3 (flow group 1). We set K = 0.4 for PAR here and the result is
presented in Figure 7. This figure shows that PAR achieved higher schedulability under
different network loads.

Electronics 2021, 10, x FOR PEER REVIEW 15 of 19

6.2. Evaluation Results
A wide range of test cases was used to evaluate our algorithm. We evaluated the

performance of the proposed algorithm (PAR) and two baseline algorithms (SPR and LBR)
by the scheduling result computed by Gurobi Optimizer. The time limit for scheduling
solution was set to 1 min and solution number limit was set to 1, so there were three pos-
sible solver outcomes:

• Solved: One sub-optimal schedule found (optimal solution is not pursued in this
paper).

• Timeout: Time limit reached without a feasible schedule.
• Infeasible: Cannot be scheduled with the given flows and routes.

6.2.1. Load Dependency
Firstly, three test cases were performed to show the schedulability of the algorithms

under different network loads. They used the topology from Figure 6a (topology 1) and
flows from Table 3 (flow group 1). We set K = 0.4 for PAR here and the result is presented
in Figure 7. This figure shows that PAR achieved higher schedulability under different
network loads.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SPR

LBR

PAR

Solved

Timeout

Infeasible

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SPR

LBR

PAR

Solved

Timeout

Infeasible

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SPR

LBR

PAR

Solved

Timeout

Infeasible

20
flows

30
flows

40
flows

Figure 7. Percentage distribution of solved, timeout and infeasible sets for PAR (period aware
routing), LBR (load balanced routing) and SPR (shortest path routing) for different numbers of
flows using topology 1 and flow group 1.

Specifically, when there are only 20 flows in the network, flows are not likely to con-
gest, so the advantage of PAR is not obvious. While as the number of the flows increase,
the probability of a highly utilized edge causing the infeasibility is growing. In this situa-
tion, the benefit of well-designed algorithms to reduce the scheduling bottlenecks is re-
flected, and the improvement of schedulability is also more obvious. Although the com-
binability between flows is similar, our algorithm can better reduce the bottleneck than
LBR and improve the schedulability by considering the combinability. This suggests that
more flows can be accommodated using our algorithm.

Figure 7. Percentage distribution of solved, timeout and infeasible sets for PAR (period aware routing), LBR (load balanced
routing) and SPR (shortest path routing) for different numbers of flows using topology 1 and flow group 1.

Specifically, when there are only 20 flows in the network, flows are not likely to
congest, so the advantage of PAR is not obvious. While as the number of the flows increase,
the probability of a highly utilized edge causing the infeasibility is growing. In this
situation, the benefit of well-designed algorithms to reduce the scheduling bottlenecks
is reflected, and the improvement of schedulability is also more obvious. Although the
combinability between flows is similar, our algorithm can better reduce the bottleneck than
LBR and improve the schedulability by considering the combinability. This suggests that
more flows can be accommodated using our algorithm.

6.2.2. Topology Dependency

Secondly, we analyze the schedulability of three algorithms using the topology from
Figure 6b to exclude the impact of a specific topology. Flow type is the same as Section 5.2.1
while the flow number is smaller since we used a smaller topology. We set K = 0.3 for
our algorithm and the result is shown in Figure 8. As shown below, the schedulability of
the three algorithms as the number of flows increases is similar to the result presented in
Figure 7. These test cases demonstrate that PAR is useful in different topologies. It is worth
noting that when the flow number is 20, the number of the timeout sets for PAR and LBR is

Electronics 2021, 10, 58 16 of 19

significantly higher than that of SPR. This is because some edges may not be used for SPR
and the complexity of ILP-based scheduling is reduced.

Electronics 2021, 10, x FOR PEER REVIEW 16 of 19

6.2.2. Topology Dependency
Secondly, we analyze the schedulability of three algorithms using the topology from

Figure 6b to exclude the impact of a specific topology. Flow type is the same as Section
5.2.1 while the flow number is smaller since we used a smaller topology. We set K = 0.3
for our algorithm and the result is shown in Figure 8. As shown below, the schedulability
of the three algorithms as the number of flows increases is similar to the result presented
in Figure 7. These test cases demonstrate that PAR is useful in different topologies. It is
worth noting that when the flow number is 20, the number of the timeout sets for PAR
and LBR is significantly higher than that of SPR. This is because some edges may not be
used for SPR and the complexity of ILP-based scheduling is reduced.

10
flows

15
flows

20
flows

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SPR

LBR

PAR

Solved

Timeout

Infeasible

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SPR

LBR

PAR

Solved

Timeout

Infeasible

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SPR

LBR

PAR

Solved

Timeout

Infeasible

Figure 8. Percentage distribution of solved, timeout and infeasible sets for PAR, LBR and SPR for
different numbers of flows using topology 2 and flow group 1.

6.2.3. Flow Type Dependency
Finally, we illustrate the advantages of our algorithm in terms of flow type. Topology

1 and flow group 2 were used in these test cases and we set K = 0.4. From Figure 9, we can
see that the results of experiment are completely different from the above two. This figure
shows that the success rate of LBR and SPR is almost the same while PAR has made a big
improvement in this aspect. This is due to the big difference in the combinability between
the flows used in these cases. For example, if F1 and F2 of the group 2 are arranged to pass
through the same edge, it will directly lead to infeasible situations. In this case, how to
make the flow with poor combinability follow disjointed paths, rather than how to opti-
mize the load distribution, becomes the key to the success of scheduling. As LBR only
considers load distribution and ignores the combinability between flows, it does not
achieve better results than SPR.

Figure 8. Percentage distribution of solved, timeout and infeasible sets for PAR, LBR and SPR for different numbers of flows
using topology 2 and flow group 1.

6.2.3. Flow Type Dependency

Finally, we illustrate the advantages of our algorithm in terms of flow type. Topology 1
and flow group 2 were used in these test cases and we set K = 0.4. From Figure 9, we can
see that the results of experiment are completely different from the above two. This figure
shows that the success rate of LBR and SPR is almost the same while PAR has made a big
improvement in this aspect. This is due to the big difference in the combinability between
the flows used in these cases. For example, if F1 and F2 of the group 2 are arranged to pass
through the same edge, it will directly lead to infeasible situations. In this case, how to
make the flow with poor combinability follow disjointed paths, rather than how to optimize
the load distribution, becomes the key to the success of scheduling. As LBR only considers
load distribution and ignores the combinability between flows, it does not achieve better
results than SPR.

In contrast, our algorithm mainly considers combinability in path selection, so flows
whose GCD is 1 will not share the same edge and the schedulability is doubled. This shows
that the proposed algorithm is more adaptable to flows with a variety of periods. It is of
practical value under the premise that there are more and more sensors in the system and
the types of flows are becoming more and more complex.

Electronics 2021, 10, 58 17 of 19Electronics 2021, 10, x FOR PEER REVIEW 17 of 19

15
flows

20
flows

25
flows

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SPR

LBR

PAR

Solved

Timeout

Infeasible

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SPR

LBR

PAR

Solved

Timeout

Infeasible

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SPR

LBR

PAR

Solved

Timeout

Infeasible

Figure 9. Percentage distribution of solved, timeout and infeasible sets for PAR, LBR and SPR for
different numbers of flows using topology 1 and flow group 2.

In contrast, our algorithm mainly considers combinability in path selection, so flows
whose GCD is 1 will not share the same edge and the schedulability is doubled. This shows
that the proposed algorithm is more adaptable to flows with a variety of periods. It is of
practical value under the premise that there are more and more sensors in the system and
the types of flows are becoming more and more complex.

7. Conclusions
In this article, a novel routing heuristic for time-triggered flows was introduced. We

discovered that periodic flows use decentralized bandwidth, and put forward the concept
of combinability to express the ability of different streams to use dispersed bandwidth. By
analyzing the combinability of two or more periodic flows, we proposed a metric to meas-
ure the scheduling bottleneck. Moreover, we found that there is only one coefficient re-
lated to the greatest common divisor between our metric and the existing methods, and
the great common divisor is an important factor to measure the combinability between
flows. We implemented test cases to evaluate the schedulability of our algorithm com-
pared to shortest path routing and a recently proposed load balanced routing. The results
were analyzed with respect to three dimensions: load, topology and flow type. Addition-
ally, they show that our method can achieve better schedulability regardless of the load
and topology in the case of high combinability between flows, which means that more
time-triggered flows can be accommodated. As for the circumstances when combinability
between flows is poor, our algorithm doubled the schedulability compared to the existing
method, while load balanced routing gained no improvement compared with the shortest
path routing. In the case of more and more complex flows in the network, better flow type
compatibility will have great practical value.

Still, shortcomings exist in our algorithm. As an empirical value in our method, K
should be determined according to the characteristics of the flow and the scale of the to-
pology, and the selection of K will greatly affect the performance of the algorithm. In the
future, we would develop heuristics considering the scheduling bottleneck globally rather
than thinking about it flow by flow, which can no longer rely on an empirical parameter.

Figure 9. Percentage distribution of solved, timeout and infeasible sets for PAR, LBR and SPR for different numbers of flows
using topology 1 and flow group 2.

7. Conclusions

In this article, a novel routing heuristic for time-triggered flows was introduced.
We discovered that periodic flows use decentralized bandwidth, and put forward the con-
cept of combinability to express the ability of different streams to use dispersed bandwidth.
By analyzing the combinability of two or more periodic flows, we proposed a metric to
measure the scheduling bottleneck. Moreover, we found that there is only one coefficient
related to the greatest common divisor between our metric and the existing methods,
and the great common divisor is an important factor to measure the combinability between
flows. We implemented test cases to evaluate the schedulability of our algorithm com-
pared to shortest path routing and a recently proposed load balanced routing. The results
were analyzed with respect to three dimensions: load, topology and flow type. Addition-
ally, they show that our method can achieve better schedulability regardless of the load
and topology in the case of high combinability between flows, which means that more
time-triggered flows can be accommodated. As for the circumstances when combinability
between flows is poor, our algorithm doubled the schedulability compared to the existing
method, while load balanced routing gained no improvement compared with the shortest
path routing. In the case of more and more complex flows in the network, better flow type
compatibility will have great practical value.

Still, shortcomings exist in our algorithm. As an empirical value in our method,
K should be determined according to the characteristics of the flow and the scale of the
topology, and the selection of K will greatly affect the performance of the algorithm. In the
future, we would develop heuristics considering the scheduling bottleneck globally rather
than thinking about it flow by flow, which can no longer rely on an empirical parameter.

Electronics 2021, 10, 58 18 of 19

Author Contributions: Conceptualization, J.W. and X.J.; data curation, J.W., W.X. and Y.P.; for-
mal analysis, J.W. and X.J.; funding acquisition, K.H. (Kai Huang); investigation, J.W., D.X., K.H.
(Kaitian Huang) and H.Y.; methodology, K.H. (Kai Huang), J.W. and X.J.; resources, K.H. (Kai Huang),
X.J. and Z.L.; software, J.W.; supervision, K.H. (Kai Huang) and X.J.; validation, K.H. (Kai Huang),
J.W. and D.X.; visualization, K.H. (Kai Huang); writing—original draft, J.W.; writing—review and
editing, K.H. (Kai Huang), J.W., X.J. and D.X. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China (2018YFB0904900,
2018YFB0904902).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bello, L.L.; Steiner, W. A perspective on IEEE time-sensitive networking for industrial communication and automation systems.

Proc. IEEE 2019, 107, 1094–1120. [CrossRef]
2. Craciunas, S.S.; Oliver, R.S.; Chmelík, M.; Steiner, W. Scheduling real-time communication in IEEE 802.1 Qbv time sensi-

tive networks. In Proceedings of the 24th International Conference on Real-Time Networks and Systems, Brest, France,
19–21 October 2016; pp. 183–192.

3. Ojewale, M.A.; Yomsi, P.M. Routing heuristics for load-balanced transmission in TSN-based networks. ACM Sigbed Rev. 2020, 16, 20–25.
[CrossRef]

4. Singh, S. Routing Algorithms for Time Sensitive Networks. Master’s Thesis, University of Stuttgart, Stuttgart, Germany, 2017.
5. Nayak, N.G.; Duerr, F.; Rothermel, K. Routing Algorithms for IEEE 802.1Qbv Networks. ACM SIGBED Rev. 2018, 15, 13–18. [CrossRef]
6. Atallah, A.A.; Hamad, G.B.; Mohamed, O.A. Routing and Scheduling of Time-Triggered Traffic in Time-Sensitive Networks.

IEEE Trans. Ind. Inf. 2019, 16, 4525–4534. [CrossRef]
7. Messenger, J.L. Time-sensitive networking: An introduction. IEEE Commun. Stand. Mag. 2018, 2, 29–33. [CrossRef]
8. Schweissguth, E.; Danielis, P.; Timmermann, D.; Parzyjegla, H.; Mühl, G. ILP-based joint routing and scheduling for time-

triggered networks. In Proceedings of the 25th International Conference on Real-Time Networks and Systems, Grenoble, France,
4–6 October 2017; pp. 8–17.

9. Dürr, F.; Nayak, N.G. No-wait packet scheduling for IEEE time-sensitive networks (TSN). In Proceedings of the 24th International
Conference on Real-Time Networks and Systems, Brest, France, 19–21 October 2016; pp. 203–212.

10. Steiner, W.; Peón, P.G.; Gutiérrez, M.; Mehmed, A.; Rodriguez-Navas, G.; Lisova, E.; Pozo, F. Next generation real-time networks
based on IT technologies. In Proceedings of the 2016 IEEE 21st International Conference on Emerging Technologies and Factory
Automation (ETFA), Berlin, Germany, 6–9 September 2016; pp. 1–8.

11. Guck, J.W.; Van Bemten, A.; Kellerer, W. DetServ: Network models for real-time QoS provisioning in SDN-based industrial
environments. IEEE Trans. Netw. Serv. Manag. 2017, 14, 1003–1017. [CrossRef]

12. Nasrallah, A.; Thyagaturu, A.S.; Alharbi, Z.; Wang, C.; Shao, X.; Reisslein, M.; ElBakoury, H. Ultra-low latency (ULL) networks:
The IEEE TSN and IETF DetNet standards and related 5G ULL research. IEEE Commun. Surv. Tutor. 2018, 21, 88–145. [CrossRef]

13. Avni, G.; Guha, S.; Rodriguez-Navas, G. Synthesizing time-triggered schedules for switched networks with faulty links.
In Proceedings of the 13th International Conference on Embedded Software, Chengdu, China, 13–14 August 2016.

14. Bingqian, L.; Yong, W. Hybrid-GA based static schedule generation for time-triggered ethernet. In Proceedings of the 2016 8th
IEEE International Conference on Communication Software and Networks (ICCSN), Beijing, China, 4–6 June 2016; pp. 423–427.

15. Tindell, K.W.; Burns, A.; Wellings, A.J. Allocating hard real-time tasks: An NP-hard problem made easy. Real Time Syst.
1992, 4, 145–165. [CrossRef]

16. Pozo, F.; Rodriguez-Navas, G.; Hansson, H. Schedule reparability: Enhancing time-triggered network recovery upon link failures.
In Proceedings of the 2018 IEEE 24th International Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA), Hakodate, Japan, 28–31 August 2018; pp. 147–156.

17. Zhang, D.G.; Zhang, T.; Dong, Y.; Liu, X.H.; Cui, Y.Y.; Zhao, D.X. Novel optimized link state routing protocol based on quantum
genetic strategy for mobile learning. J. Netw. Comput. Appl. 2018, 122, 37–49. [CrossRef]

18. Al-Turjman, F. Cognitive routing protocol for disaster-inspired internet of things. Future Gener. Comput. Syst. 2019, 92, 1103–1115.
[CrossRef]

19. Pop, P.; Raagaard, M.L.; Craciunas, S.S.; Steiner, W. Design optimisation of cyber-physical distributed systems using IEEE
time-sensitive networks. IET Cyber Phys. Syst. Theory Appl. 2016, 1, 86–94. [CrossRef]

20. IEEE. IEEE Standard for Local and Metropolitan Area Networks—Bridges and Bridged Networks—Amendment 24; IEEE: New York, NY,
USA, 2016.

http://doi.org/10.1109/JPROC.2019.2905334
http://doi.org/10.1145/3378408.3378411
http://doi.org/10.1145/3267419.3267421
http://doi.org/10.1109/TII.2019.2950887
http://doi.org/10.1109/MCOMSTD.2018.1700047
http://doi.org/10.1109/TNSM.2017.2755769
http://doi.org/10.1109/COMST.2018.2869350
http://doi.org/10.1007/BF00365407
http://doi.org/10.1016/j.jnca.2018.07.018
http://doi.org/10.1016/j.future.2017.03.014
http://doi.org/10.1049/iet-cps.2016.0021

Electronics 2021, 10, 58 19 of 19

21. Steiner, W.; Craciunas, S.S.; Oliver, R.S. Traffic planning for time-sensitive communication. IEEE Commun. Stand. Mag. 2018, 2, 42–47.
[CrossRef]

22. Atallah, A.A.; Hamad, G.B.; Mohamed, O.A. Fault-resilient topology planning and traffic configuration for IEEE 802.1 Qbv TSN
networks. In Proceedings of the 2018 IEEE 24th International Symposium on On-Line Testing and Robust System Design (IOLTS),
Platja D’Aro, Spain, 2–4 July 2018; pp. 151–156.

23. Gavrilut, V.; Zarrin, B.; Pop, P.; Samii, S. Fault-tolerant topology and routing synthesis for IEEE time-sensitive networking. In Proceed-
ings of the 25th International Conference on Real-Time Networks and Systems, Grenoble, France, 4–6 October 2017; pp. 267–276.

24. Falk, J.; Dürr, F.; Rothermel, K. Exploring practical limitations of joint routing and scheduling for TSN with ILP. In Proceedings
of the 2018 IEEE 24th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA),
Hakodate, Japan, 28–31 August 2018; pp. 136–146.

25. Yu, Q.; Gu, M. Adaptive Group Routing and Scheduling in Multicast Time-Sensitive Networks. IEEE Access 2020, 8, 37855–37865.
[CrossRef]

26. Hofmann, R.; Nikolić, B.; Ernst, R. Slack-based Traffic Shaping for Real-time Ethernet Networks. In Proceedings of the 2019 IEEE
25th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), Hangzhou, China,
18–21 August 2019; pp. 1–11.

27. Falk, J.; Dürr, F.; Rothermel, K. Time-Triggered Traffic Planning for Data Networks with Conflict Graphs. In Proceedings of the 2020
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), Sydney, Australia, 21–24 April 2020; pp. 124–136.

28. Arif, F.A.R.; Atia, T.S. Load balancing routing in time-sensitive networks. In Proceedings of the 2016 Third International Scientific-
Practical Conference Problems of Infocommunications Science and Technology (PIC S&T), Kharkiv, Ukraine, 4–6 October 2016;
pp. 207–208.

29. Bullynck, M. Modular arithmetic before CF Gauss: Systematizations and discussions on remainder problems in 18th-century
Germany. Hist. Math. 2009, 36, 48–72. [CrossRef]

30. Platt, E.L. Network Science with Python and NetworkX Quick Start Guide: Explore and Visualize Network Data Effectively; Packt
Publishing Ltd.: Birmingham, UK, 2019.

http://doi.org/10.1109/MCOMSTD.2018.1700055
http://doi.org/10.1109/ACCESS.2020.2974580
http://doi.org/10.1016/j.hm.2008.08.009

	Introduction
	Related Work
	System Model and Problem Definition
	System Model
	Problem Definition

	Motivation Example
	Proposed Solution
	The Combinability of Different Periods of Flows
	Examples for Different Combinability
	Analysis of the Combinability between Two Flows
	Combinability among Multiple Flows

	The Proposed Routing Algorithm
	Period-Aware Routing Algorithm
	Sorting the Flows
	Find Best Path

	Experiments and Evaluation
	Experiment Setup
	Evaluation Results
	Load Dependency
	Topology Dependency
	Flow Type Dependency

	Conclusions
	References

