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ABSTRACT 
 

In order to study the Quantitative Structure Activity Relationship (QSAR) against protein tyrosine 
phosphatase 1B and descriptors, we used a series of fourteen (14) molecules derived from 
perimidine. The compounds were optimized at the computational level B3LYP / 6-31 G (d, p), to 
obtain the descriptors of the model. This study was performed using the Linear Multiple Regression 
(MLR) method. This tool allowed us to obtain a quantitative model from the descriptors that are, the 
overall softness (S), the energy of the lowest vacant (ELUMO), the bond length l (N-C1). This 
model has good statistical performance (R2 = 0.958; RMCE = 0.110; F = 43.870). In addition, the 
external validation test of Tropsha and the domain of applicability from the levers were verified. 
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1. INTRODUCTION 
 
Many diseases such as cancer, diabetes, 
obesity, infections, autoimmune and 
neuropsychiatric disorders are linked to the 
deregulation of protein tyrosine phosphatases 
(PTP) [1,2]. For the sake of well-being, the 
scientific community finds interest in finding an 
inhibitor of this protein. In 2013 Wen-Long Wang 
et al. [3], show that 2,3-dihydro-1H-perimidine 
have protein tyrosine phosphatase inhibitory 
activity. They demonstrate through high 
throughput screening that 4- (2,3-dihydro-1H-
peridin-2-yl) benzoic acid inhibits this protein with 
an IC50 value of 8.34 ± 1.07 M. 2,3- Dihyro -1H -
Perimidines are defined as the product resulting 
from the condensation of 1,8-
diaminonaphthalene (1,8 - DAN) with carbonyl 
derivatives (Aldehyde). The 1H - perimidines 
which are heterocyclic compounds constitute a 
class of organic compounds which has a great 
structural variety. This allows their use in various 
scientific fields. They are characterized by either 
a bond deficit or an excess Π bond due to the 
electron density movements of the nitrogen 
atoms present in the naphthalene ring [4]. These 
compounds have a very important interest 
because of their polyvalent [5], optoelectronic, 
chemotherapeutic, thermochromic, and 
photochromic properties. They are still used with 

applications [6] in plasma display panels, organic 
solar cells and optical recording media [4]. 1-H 
perimidines are used in medical chemistry as 
antifungal, antimicrobial, antiulcer [7] and 
antitumor agents. Previous studies have shown 
that 2,3-dihydro -1H-perimidine have important 
biological activities and are good inhibitors. With 
the aim of obtaining new molecules with more 
interesting biological activities, the study of the 
quantitative structure-activity relationship (QSAR) 
is the process by which a molecular structure is 
correlated with a well-defined effect such as 
biological activity. or chemical reactivity. The 
development of this type of relationship is 
expanding rapidly and is becoming essential in 
pharmaceutical chemistry and drug design [8]. 
This is why the QSAR methodology, which has 
emerged over the past few decades [9,10], and 
which quantitatively links biological activity to 
molecular structure, has entered into this 
research process [11,12,13,14,15]. The objective 
of this work is to develop a QSAR model, by 
multiple linear regression, capable of predicting 
the inhibitory activity of the protein tyrosine 
phosphatases of a series of perimidine Table 1. 
These compounds were synthesized by the 
condensation of the 2, 3-dihydro-1H-perimidine 
which are derived from 1,8-diaminonaphthalene 
and benzoic acid derivatives. 

 
Table 1. Molecular structure, code and inhibitory concentration (IC50) of the fourteen (14) 

derivatives of perimidine 
 

Codes Structures IC50(μM) 

A1 

 

8.34 

A2 

 

20.23 
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Codes Structures IC50(μM) 

A3 

 

27.75 

A4 

 

22.21 

A5 

 

5.53 

A6 

 

7.82 

A7 

 

5.88 

A8 

 

6.45 

A9 

 

6.91 
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Codes Structures IC50(μM) 

A10 

 

10.82 

A11 

 

0.66 

A12 

 

15.24 

A13 

 

3.56 

A14 

 

0.59 

 

2. MATERIALS AND METHODS 
 

2.1 Computational Theory Level 
 
Prediction of activity against protein tyrosine 
phosphatase 1B was performed using Gaussian 
09 software [16]. DFT methods are generally 
known to generate a variety of molecular 
properties [17-19] in QSAR studies. The latter 
increase the predictability of QSAR models while 
reducing calculation time and cost implications in 
the design of new drugs [20,21]. The theory level 

B3LYP / 6-31 G (d, p) was used to determine 
molecular descriptors. The fourteen (14) 
molecules used in this study have Inhibitory 
Concentrations (ICs) varying from 0.59 to 27.75 
μM. Biological data are generally expressed as 
the opposite of the decimal logarithm of activity 
(− log10(𝐶))to obtain better mathematical values 
when structures are biologically active [22,23]. 
The antimalarial activity will be expressed by the 
potential of the inhibitory concentration pIC 
defined by equation (1): 
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𝑝𝐼𝐶50 = − log10(𝐼𝐶50 ∗ 10−6)                      (1) 
 

IC50, the inhibitory concentration in μM. 
 
The modeling was developed using namely the 
linear multiple regression (LMR) method 
implemented in Excel [24] and XLSTAT [25] 
spreadsheets. 
 

2.2 Molecular Descriptors Used 
 
In order to build our QSAR model, several 
molecular descriptors were calculated. In 
particular, the energy of the vacant lowest orbital, 
softness and bond length (N-C1). The energy of 
the lowest vacant provides information on the 
electron acceptor character of the molecule. 
ELUMO indicates the ability of a molecule to 
accept electrons, the lower the energy of BV, the 
higher the probability that the molecule will 
accept electrons. Overall softness is the ability of 
an atom or molecule to retain an acquired 
charge. The lower the overall softness of a 
system, the more resistant it is to electron 
transfer and therefore the more stable it is 
expression is given by the relation: 
 

S =
1

η
                                                                     (𝟐)  

 
Avec :  

 

𝜂 =
𝐼−𝐴𝐸

2
=  

1

2
(ELUMO − EHOMO)                    (3)  

 
The geometric descriptor used is the bond length 
l (N-C1) in Armstrong (Å) (Fig. 1). This descriptor 
is illustrated by the figure below around the 
nucleus of perimidine. 

 
 

Fig. 1. Geometric descriptor of the perimidine 
derivatives used: bond length (l (N-C1)) in 

Armstrong (Å) 
 

2.3 Estimation of the Predictive Capacity 
of a QSAR Model 

 
quality of a model is determined based on 
various statistical analysis criteria including the 
coefficient of determination R2, the standard 
deviation (S) or the Root of the Mean Squares of 

Errors (RMCE), the correlation coefficients cross-

validation 𝐐𝐂𝐕
2  and Fischer F.R2, S and F relate to 

the fit of the calculated and experimental values. 
They describe the predictive capacity within the 
limits of the model, and make it possible to 
estimate the precision of the values calculated on 
the test set [26,27]. As for the cross-validation 

coefficient 𝐐𝐂𝐕
2 , it provides information on the 

predictive power of the model. This forecasting 
power is said to be “internal” because it is 
calculated from the structures used to build this 
model. The coefficient of determination R² gives 
an evaluation of the dispersion of the theoretical 
values around the experimental values. The 
quality of the modeling is better when the points 
are close to the line of fit [28]. The fit of the points 
to this line can be assessed by the coefficient of 
determination. 
 

𝑹2 = 1 −
∑(𝑦𝑖,𝑒𝑥𝑝−�̂�𝑖,𝑡ℎé𝑜)

2

∑(𝑦𝑖,𝑒𝑥𝑝−�̅�𝑖,𝑒𝑥𝑝)
2                    (4)  

 
Où : 
𝑦𝑖,𝑒𝑥𝑝  : Experimental value of the biological 

activity 
�̂�𝑖,𝑡ℎé𝑜  : Theoretical value of the biological 

activity 
�̅�𝑖,𝑒𝑥𝑝  : Average value of the experimental 

values of the biological activity. 
 
The closer the value of R² is to 1, the more the 
theoretical and experimental values are 
correlated 
 
Another statistical indicator used is the Root of 
the Mean Squares of RMCE Errors. It allows the 
reliability and accuracy of a model to be 
assessed: 
 

RMCE = √∑(𝑦𝑖,𝑒𝑥𝑝−𝑦𝑖,𝑡ℎé𝑜)
2

𝑛−𝑘−1
                        (5)  

 
The Fisher F test is also used to measure the 
level of statistical significance of the model, that 
is to say the quality of the choice of descriptors 
constituting the model. 
 

𝐅 =
∑(𝑦𝑖,𝑡ℎé𝑜−𝑦𝑖,𝑒𝑥𝑝)

2

∑(𝑦𝑖,𝑒𝑥𝑝−𝑦𝑖,𝑡ℎé𝑜)
2 ∗

𝑛−𝑘−1

𝑘
                      (6)  

 
The coefficient of determination of the cross-

validation 𝐐𝐂𝐕
2  makes it possible to evaluate the 

accuracy of the prediction on the training set. It is 
calculated using the following relation: 
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𝑸𝒄𝒗
2 =

∑(𝑦𝑖,𝑡ℎé𝑜−�̅�𝑖,𝑒𝑥𝑝)
2

−∑(𝑦𝑖,𝑡ℎé𝑜−𝑦𝑖,𝑒𝑥𝑝)
2

∑(𝑦𝑖,𝑡ℎé𝑜−�̅�𝑖,𝑒𝑥𝑝)
2                    (7)  

 

2.4 Acceptance Criteria for a Model 
 
The performance of a mathematical model, for 
Eriksson et al. [29], is characterized by a value of 

𝑄𝑐𝑣
2 >  0.5for a satisfactory model, while for the 

excellent model 𝑄𝑐𝑣
2 >  0.9 . According to these 

authors, given a test set, a model will perform 

well if the acceptance criterion 𝑅2 − 𝑄𝑐𝑣
2 <  0.3is 

met. 
 
According to Tropsha et al. [30,31,32], for the 
external validation set, the predictive power of a 
model can be obtained from five criteria. These 
criteria are as follows: 
 

1) 𝑅𝑇𝑒𝑠𝑡
2 > 0.7 ,  2) 𝑄𝐶𝑣𝑇𝑒𝑠𝑡

2 > 0.6 , 

 3) |𝑅𝑇𝑒𝑠𝑡
2 − 𝑅0

2| ≤ 0.3 , 

4)  
|RTest

2 −R0
2|

RTest
2 < 0.1 et 0.85 ≤ 𝑘 ≤ 1.15,  5) 

|𝑅𝑇𝑒𝑠𝑡
2 −𝑅′0

2|

𝑅𝑇𝑒𝑠𝑡
2 < 0.1 et 0.85 ≤ 𝑘′ ≤ 1.15 

 

2.5 Area of Applicability (DA) 
 
The domain of applicability of a QSAR model is 
the physico-chemical, structural or biological 
space, in which the model equation is applicable 
to make predictions for new compounds [33]. It 
corresponds to the region of chemical space 
including compounds from the learning game 
and similar compounds, which are closely related 
in the same space [34]. It appears necessary, 
even obligatory, to determine the DA of any 
QSAR model. This is what the Organization for 
Economic Cooperation and Development 
(OECD) recommends in developing a QSAR 
model [35]. There are several methods for 
determining the domain of applicability of a 
model [34]. Among these, the approach used in 
this work is that of leverage. This method is 
based on the variation of the standardized 
residuals of the dependent variable with the 

distance between the values of the descriptors 
and their mean, called leverage [36]. The ℎ𝑖𝑖 are 
the diagonal elements of an H matrix called the 
hat matrix. H is the projection matrix of the 
experimental values of the explained variable 
𝑌𝑒𝑥𝑝é in the space of the values of the predicted 

explained variable 𝑌𝑝𝑟é𝑑 such that: 

 
𝑌𝑝𝑟é𝑑 = 𝐻𝑌𝑒𝑥𝑝é(8)  

 
𝐻is defined by the expression (21) : 
 

𝐻 = 𝑋(𝑋𝑡𝑋)−1𝑋𝑡(9)  
 
The field of applicability is delimited by a 
threshold value of the leverage denoted h *. In 

general, it is fixed at 3
𝑝+1

𝑛
, where n is the number 

of compounds in the training set, and p is the 
number of descriptors in the model [37,38]. For 
standardized residues, the two limit values 
generally used are ± 3σ, σ being the standard 
deviation of the experimental values of the 
quantity to be explained [39]: this is "the rule of 
three sigmas" [40]. 
 

3. RESULTS AND DISCUSSION 
 
This QSAR modeling work was conducted using 
a series of fourteen (14) perimidine derivatives. 
The molecules were divided into two groups, 
nine (9) were used for the learning game and five 
(5) for the validation game. The values of the 
descriptors as well as those of the experimental 
biological activities of the molecules are listed in 
Table 2. 
 
The table 3 presents the values of the partial 
correlation coefficients aij of these descriptors. 
 

The calculation of the partial correlation 
coefficient between each of the pairs of all the 
descriptors is less than 0.95 (aij<0.95), which 
means that these different descriptors are 
independent of each other [41,8]. 

 
Table 2. Quantum descriptors and experimental inhibitors of protein tyrosine phosphatase 1B 

(PTP1B) activities of the Training Set test and validation set 
 

Codes ELUMO(ev) s LN-C1 IC50 pIC50 

Training Set 

A1 -1.597 0.605 1.463 8.34 1.685 
A2 -1.958 0.683 1.462 20.23 1.300 
A4 1.179 0.335 1.460 22.21 1.259 
A5 -1.056 0.537 1.463 5.53 1.863 
A6 -1.213 0.526 1.457 7.82 1.713 
A8 -0.736 0.502 1.464 6.45 1.796 
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Codes ELUMO(ev) s LN-C1 IC50 pIC50 

A10 -1.891 0.659 1.464 10.82 1.572 
A11 -1.560 0.411 1.463 0.66 2.786 
A12 -1.197 0.565 1.461 15.24 1.423 

Validation Set 

A3 -1.276 0.561 1.463 27.75 1.163 
A7 -0.547 0.475 1.463 5.88 1.836 
A9 -0.670 0.493 1.464 6.91 1.766 
A13 -1.451 0.580 1.465 3.56 2.054 
A14 -1.320 0.577 1.486 0.59 2.835 

 
Table 3. Values of the bivariate linear correlation coefficients of the descriptors 

 

Variables ELUMO(ev) s(eV-1) N-C1(Å) 

ELUMO(ev) 1 
  

s(eV-1) -0.803 1 
 

N-C1(Å) -0.242 0.169 1 

 

3.1 Quantitative Structure Activity 
Relationship (QSAR) Model and 
Contribution of Descriptors 

 
It should be noted that the negative or positive 
sign of the coefficient of a descriptor of the model 
reflects the effect of proportionality between the 
evolution of the biological activity of interest and 
this parameter of the regression equation. Thus, 
the negative sign indicates that when the value of 
the descriptor is high, the biological activity 
decreases while the positive sign translates the 
opposite effect. The model equation obtained 
using the theoretical descriptors related to the 
optimized molecules and the statistical indicators 
are presented below: 
 

pIC50 = -61,812-0,679*ELUMO(ev)-
6,163*s(eV-1)+45,200*LN-C1(Å) 

 
The negative signs of the different coefficients of 
the model parameters indicate that the inhibitors 
of protein tyrosine phosphatase 1B (PTP1B) 
activity (pIC50) evolves inversely with (ELUMO and 
s). 

 
The correlation coefficient indicates that 95.6% of 
the molecular descriptors that define this model 
are taken into account at a standard deviation of 
0.110. The significance of the model is reflected 
by the Fischer coefficient F = 43.870. Fisher's 
value shows that the error made is less than 
what the model explains [42][42]. For this model, 

the cross-validation correlation coefficient 𝑄𝑐𝑣
2  is 

equal to 𝑄𝑐𝑣
2  = 0.958. This value, greater than 

0.9, reflects a model said to be excellent 
according to Erikson et al. [43]. This model is 
acceptable because it agrees with the 

acceptance criteria of these authors 𝑹𝟐 − 𝑸𝒄𝒗
𝟐 = 

0.958- 0.958 = 0.000 <0.3. All these statistical 
indicators clearly show that the model developed 
explains the antimalarial activity in a statistically 
significant and satisfactory manner. 
 
The regression graph of the RML model showing 
theoretical antimalarial activity as a function of 
experimental activity is shown in Fig. 2. 

 

Analysis of the regression curve of the RML 
model shows that all points are around the 
regression line. This result indicates that there is 
a small difference (RMCE = 0.110) between the 
values of pIC50

exp and pIC50
th, so a good 

similarity at the level of these values, apart from 
some difference. This similarity is illustrated in 
Fig. 3. 
 
The checks of the Tropsha criteria for the 
validation sets are presented in Table 5. 
 

Analysis of the table shows that out of the five (5) 
Tropsha criteria there is one (1) criterion that is 
not met. However Ouattara et al [32] have shown 
that if 3/4 of the criteria are met then the model is 
acceptable for the prediction. 

 
Table 4. Rapport d'analyse statistique du modèle RML 

 

R2 𝑸𝒄𝒗
𝟐   RMCE Fisher(F) α 

0.958 0.958 0.110 43.870 > 95 % 
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Fig. 2. The regression line of the RML model 
 

 
 

Fig. 3. Similarity curve of the experimental and predicted values of the RML model 
 

Table 5. Verifications of the tropsha criteria of the external validation set of the RML model 
 

R2
ext Q2cv R2-R2

0 𝑹𝟐−𝑹𝟎
𝟐

𝑹𝟐   
k 𝑹𝟐−𝑹𝟎

𝟐′

𝑹𝟐   
k’ 

0.776 0.742 0.296 0.381 0.986 0.044 0.995 

 
The contributions of the three (3) 
physicochemical descriptors in the prediction of 
activity against the protein tyrosine phosphatase 
1B of perimidine derivatives were illustrated by 
the normalized coefficients and shown in Fig. 4. 
 
According to the contribution of these 
descriptors, the softness (s) displays the highest 
normalized coefficient (-1.506) followed by the 
energy of the lowest vacant (ELUMO) with -1.423 
and the bond length L (N-C1) has the lowest 
coefficient (0.197) compared to the other 

descriptors. Note that softness (s) is the most 
influential physicochemical descriptor. Thus, to 
improve the inhibitory concentration IC50 in the 
synthesis of new derivatives of perimidine, it is 
necessary to play to the maximum on the 
softness (s). 
 
The graph of the standardized residuals 
according to the levers ℎ𝑖𝑖  in Fig. 5, makes it 
possible to visualize the domain of applicability of 
the model. 

 

y = 0.9604x + 0.0742

R² = 0.9582
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Fig. 4. Contribution of descriptors in the model 
 

 
 

Fig. 5. Scope of the model 
 
For the 9 molecules of the learning set and the 3 
descriptors of the model, the threshold value of 
the levers h * is 1.33. The extreme values of the 
standardized residuals are ± 3 according to the 
“three sigma rule” [40]. These different values 
delimit the range of applicability [44] of the model 
as shown in the graph in Fig. 5. All compounds 
are within the range, resulting in the reliability of 
the model. 
 

4. CONCLUSION 
 

In this work we established a relationship 
between the potential of the inhibitory 
concentration pIC50 and the physicochemical 

descriptors of perimidine derivatives. Overall 
softness (S), lowest vacant energy (ELUMO), l-
bond length (N-C1) are the descriptors that best 
reflect activity against protein tyrosine 
phosphatase 1B of perimidine derivatives. The 
statistical indicators (R2 = 0.958; RMCE = 0.110; 
F = 43.870) of the model show that they are 
acceptable, robust and have good predictive 
power. The external validation test showed a 
good correlation between the theoretical and 
experimental pIC50 inhibitory potential 
observations. This shows that these models are 
therefore acceptable for the prediction of the 
inhibitory IC50 concentration of perimidine 
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derivatives. Also, we note in terms of the 
contribution of descriptors that a decrease in 
softness (s) could promote a significant 
improvement in the inhibitory concentration IC50 
of perimidine analogues against the protein 
tyrosine phosphatase 1B. In addition, the domain 
of applicability of this model determined from the 
levers shows that a prediction of pIC50 of new 
perimidine derivatives is acceptable when its 
leverage value is less than 1.33. 
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