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Abstract: Climate change is modifying the way we design and operate water infrastructure, including
reservoirs. A particular issue is that current infrastructure and reservoir management rules will likely
operate under changing conditions different to those used in their design. Thus, there is a big need to
identify the obsolescence of current operation rules under climate change, without compromising
the proper treatment of uncertainty. Acknowledging that decision making benefits from the scientific
knowledge, mainly when presented in a simple and easy-to-understand manner, such identification—
and the corresponding uncertainty—must be clearly described and communicated. This paper
presents a methodology to identify, in a simple and useful way, the time when current reservoir
operation rules fail under changing climate by properly treating and presenting its aleatory and
epistemic uncertainties and showing its deep uncertainty. For this purpose, we use a reliability–
resilience–vulnerability framework with a General Circulation Models (GCM) ensemble under the
four Representative Concentration Pathways (RCP) scenarios to compare the historical and future
long-term reservoir system performances under its current operation rule in the Limarí basin, Chile,
as a case study. The results include percentiles that define the uncertainty range, showing that during
the 21st century there are significant changes at the time-based reliability by the 2030s, resilience
between the 2030s and 2040s, volume-based reliability by the 2080s, and the maximum failure by
the 2070s. Overall, this approach allows the identification of the timing of systematic failures in
the performance of water systems given a certain performance threshold, which contributes to the
planning, prioritization and implementation timing of adaptation alternatives.

Keywords: decision making; reliability; resilience; vulnerability; reservoir operation; time of emergence

1. Introduction

Reservoirs are fundamental infrastructure for water supply and irrigation, especially
in semiarid and arid regions, such as Central Chile, characterized by a marked seasonality
of the hydrological cycle. Furthermore, considering that agriculture is responsible for about
70% of global water withdrawals [1], and that climate change-related water reductions
have affected arid and semi-arid regions of the world [2], reservoir management in these
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regions is a key aspect of water resources sustainability [3–5]. Although historical reservoir
performance is expected to worsen with climate change in many cases [6–8], building new
infrastructure is not always feasible due to economic and environmental constrains, which
are likely to increase in time [9–12]. Thus, developing operational strategies to maximize
the performance of existing infrastructure is essential, and represents an opportunity to
adapt to climate change [13].

Reservoirs’ reliability depends on operation rules that specify desired storage volumes
or releases based on the time of the year and the water demand. Ahmad et al. [9], and
Fayaed et al. [14], identify different approaches used to assess optimal reservoir opera-
tion rules, which can be classified into linear programming [15,16], nonlinear program-
ming [17–19], dynamic programming [20–22], and computational intelligence optimization
methods such as fuzzy set programing [23,24] and artificial neural networks tools [25,26].
Furthermore, the performance of reservoir operation is typically evaluated using indexes,
with reliability, resiliency, and vulnerability (RRV) [27] being widely adopted [13,28–32].
The above-mentioned methods commonly rely on the assumption that the statistical char-
acteristics of the future inflows are equivalent to those of the historical period [33], which
may no longer be acceptable given the impacts of climate change on hydrological pro-
cesses [33–36]. Furthermore, the estimations of future reservoir inflows using General
Circulation Models (GCMs) are uncertain [37,38], and the effectiveness of the operation
rules is challenged by possible changes in the seasonality of the hydrological cycle [39–41].

Because of the impacts of climate change, reservoirs’ operators may need to adapt to
deal with the cascade of uncertainties that affect hydrological projections [13,42]. Modelling
water resources under changing conditions involves dealing with uncertainties [43], some-
thing that has been incorporated into reservoir operation studies in very different manners.
Some studies have broadly analyzed different sources of uncertainty under climate change
by quantifying reservoir operation’s performance in the long-term considering multiple
GCMs ensembles [44–49]. Using stochastically generated data to analyze the impacts of
uncertain future stream flows in the performance of reservoirs around the world, ref. [50]
concluded that intra-GCM uncertainties (i.e., the GCM run variability over different initial
conditions) are significant for most of these reservoirs. Even climate stress test has been
used to provide a relevant assessment of climate change impacts, while considering its
uncertainty [51]. Finally, several recent studies used RRV indexes to evaluate the uncer-
tainty and variability in reservoir performance under climate change [13,46,52–59]. All the
aforementioned studies have contributed to the understanding of climate change effects
on reservoir operation. In particular, some of the recent studies have analyzed how to
adapt reservoir operation infrastructure to climate change, proposing different hedging
methodologies [52,53,55], and optimization techniques [59]. Nevertheless, to the best of
our knowledge no published study has tried to identify the timing when the performance
of current operation rules in reservoirs will significantly worsen due to climate change. In
places with severe legal or social constrains to change how reservoirs systems are currently
operated, knowing when the performance will deteriorate is crucial for decision making.

The time at which the climate change signal emerges from natural climate variability is
called Time of Emergence (ToE) [60]. Despite its potential usefulness for water management
and decision making, the ToE concept has mainly been studied for precipitation [61–66] and
temperature [67–70], as well as for other variables and phenomena such as sea level [71,72],
different ocean properties [73,74], heat weaves, and extreme temperatures [75,76], arid-
ification [77], and fire weather indices [78]. Only recently, a few studies have identified
the ToE for streamflows and hydrological regimes [79–82]. Most of these studies use a
broad scale, while a few ones have estimated ToE at the basin scale needed by decision
makers [83]. In recent years water infrastructure managers have been interested in knowing
when reservoir operation rules of the past will no longer pertain in the future climate. For
example, recent studies in the Colorado River showed that past allocation schemes will not
work in mid-term future [84]. Hence, improving our understanding in the identification
of the ToE for reservoir performance is of relevance. Such studies would be of high inter-
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est when conveying adaptation and climatic knowledge to be used by practitioners and
decision makers [85]. In fact, transferring this knowledge through easily understandable
information to water managers remains a task to be better addressed [86]. Facilitating
decision making when dealing with operation rules that can become obsolete and fail in
assuring the expected reservoir performance, is no exception.

There is still a gap between the information provided by climate scientists and hydrolo-
gists and the needs from water managers and practitioners [87]. Issues commonly identified
as limitations when transferring climate change information to decision makers include
communication challenges and spatial resolutions of scientific results being too broad for
decision making [88]. Some of the strategies to fill this gap are decreasing the complexity
of the scientific results and developing communications’ frameworks. Rayner et al. [89]
concluded that organizational complexities, difficult access to programming codes, and
technical capacities, are the main reasons explaining why managers are reluctant to use hy-
drological forecast in decision making. From this point of view, when considering climate
change, a fundamental question among water managers and authorities is: when do the
current operation rules stop performing as they used to, and thus should be updated? On
the other hand, to help answering this question water scientists must identify suitable and
useful ways to present the results obtained from future hydro-climatic projections. Such
presentation by no means should compromise the accurate treatment of the uncertainty
related to climate change projections, certainly a highly complex task. Knowing the timing
when current operation performance will deteriorate might help decision makers to even-
tually optimize new operation rules under climate change or build new infrastructure and
decide when such decisions must be implemented.

The objective of this paper is to identify the obsolescence of current operation rules
of a reservoir system under climate change scenarios (i.e., identify the ToE for the current
reservoir operation rule), and accomplish a clear, simple, and useful representation of this
identification for its use by water managers and decision makers, without compromising
the complex analysis required in the assessment of climate change uncertainty. In particular
the approach takes into account three sources of uncertainty: (a) aleatory uncertainty, i.e.,
the natural variability represented by intra-GCM uncertainties, (b) epistemic uncertainty,
i.e., as represented by the spread of multi-GCM ensembles, and (c) deep uncertainty, i.e., as
represented by the choice of Representative Concentration Pathway (RCP) scenario. Note
that the methodology here presented treats aleatory and epistemic uncertainties in a risk
analysis, while deep uncertainty is only shown. To include these uncertainties, we adapted
a comprehensive methodology previously developed and used to evaluate climatic infor-
mation [90] and identifying the local ToE of precipitation and temperature [83]. With the
methodology, we assess the long-term performance of the Limarí (central Chile) reservoir
system based upon projections from an ensemble of GCMs runs under four climate change
scenarios and seek to provide specific insights for decision makers regarding the time at
which current operation rules will systematically fail (i.e., ToE). This insight might help
decision makers to decide the implementation of strategies to cope with climate change
that are out of the scope of this paper (e.g., optimizing the operation rule, building new
infrastructure, changing crop types). The study is organized as follows. The description
of the Limarí basin reservoir system and its operation rules are provided in Section 2.
Section 3 describes the methodology used to analyze the range of RRV indexes perfor-
mance, produced by an ensemble of GCMs under the four RCP scenarios, and identify
the ToE or time at which its performance worsens significantly compared to the historical
period. The main results are presented in Section 4, while the key conclusions are discussed
in Section 5.

2. The Limarí River Basin and the Paloma Reservoir System

The Limarí River basin is a North-central Chile snow-dominated catchment with an
area of 11,800 km2, whose outlet is located at 30◦43′51′′ S, 71◦42′01′′ W. This semi-arid basin
has large spatial variation in precipitation, increasing from the Pacific coast to the Andes,
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and from north to south, with annual average between 100 and 300 mm. According to the
monthly hydro-meteorological records available from the Chilean Water Agency (Dirección
General de Aguas, DGA, http://snia.dga.cl/BNAConsultas/reportes), precipitation occurs
mostly during autumn and winter (May to August), and snow accumulates in the upper
basin. The precipitation inter-annual variability is also high (i.e., coefficient of variation
of 0.65–0.75 for different gauges) with a strong signal associated with El Niño Southern
Oscillation (ENSO) phenomenon [91]. On the other hand, streamflow is mostly produced
by snowmelt during spring and summer seasons (September to January). Table 1 lists
the streamflow gauges used in the study. Under future climate, droughts are expected to
become more recurrent in the basin [90], and according to Chadwick et al. [83], statistically
significant changes in future annual precipitation are expected to emerge between 2030
and 2050, as measured by the ToE.

Table 1. Streamflow gauges in the Limarí basin.

Station Subcatchment Area (km2) Years of Record Elevation (m) Latitude Longitude

San Agustín (HSA) Hurtado 656 1969–2011 2035 30◦27′44′′ S 70◦32′10′′ W
Ojos de agua (LMOA) Los Molles 144 1969–2011 2355 30◦44′37′′ S 70◦26′20′′ W

Cuestecita (MC) Mostazal 353 1969–2011 1250 30◦48′46′′ S 70◦36′46′′ W
Las Ramadas (GLR) Grande 544 1969–2011 1380 31◦00′42′′ S 70◦34′52′′ W

Desembocadura (TD) Tascadero 238 1969–2011 1370 31◦00′43′′ S 70◦39′52′′ W
Fragüita (CF) Cogotí 475 1969–2011 1065 31◦06′43′′ S 70◦53′06′′ W

The Paloma reservoir system located in the basin supplies water to ~70,000 ha of
irrigated land and drinking water to Ovalle city (110,000 inhabitants). The system is
composed of the Paloma, Cogotí, and Recoleta reservoirs, whose capacities are 750, 150,
and 100 Mm3, respectively (Figure 1), and according to Chilean water regulation [92] is
expected to have a time-based reliability of an 85%. The total capacity largely exceeds
the average annual system inflow (i.e., 400 Mm3), which allows coping with the high
inter-annual variability (i.e., between several years) [41] as presented in Table 2, which
shows values of the coefficient of variation ranging between 0.70 and 1.27. Moreover, the
intra-annual streamflow variability (i.e., between months of a year) is naturally regulated
by snow accumulation and melting, which drives the spring and summer peak flows.
Because future spring and summer flows are expected to occur earlier in the season due
to climate change [40,41], the reservoir system is expected to participate more actively in
regulating future flows. As shown in Figure 1, the Recoleta and Paloma reservoirs operate
in parallel, while the Cogotí reservoir located in the upper basin is in series with Paloma.
Nevertheless, because the Paloma reservoir is five times larger than the Cogotí and given
that the last mainly supplies the agricultural area above Paloma reservoir, the entire system
can be simulated as three reservoirs working in parallel.

The current operation rule of the system was developed by Ferrer et al. [93], who
used precipitation and streamflow data from 1944 to 1976 to simulate the inter-annual
variability and various allocation scenarios. Ferrer et al. [93], estimated volumes of 138 and
220 Mm3 for the 3- and 4-year moving average of the annual inflows to the system with 85%
exceedance probability, respectively. The moving average inflows with 85% exceedance
probability are important because they give information about the maximum amount of
water that can be allocated, while keeping a time-based reliability of 85%, which restricts
the maximum amount of water rights that can be allocated in Chile [92]. After analyzing
the historical hydrology, Ferrer et al. [93] concluded that a wet year is expected to follow
three dry years. Hence, a period of three years was considered critical for the long-term
operation of the reservoir system, leading to a single annual allocation decision [93]. Based
on this analysis Ferrer et al. [93] determined the operation rule and the amount of water to
be allocated from each reservoir that has been operating ever since (Equation (5), depicted
at the end of this section).

http://snia.dga.cl/BNAConsultas/reportes
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Table 2. Comparison of observed (obs) and simulated (sim) streamflows for calibration and validation
periods.

Calibration (1985–2011) Validation (1969–1984)

Station NSE
Mean (m3/s) C.V. 1

NSE
Mean (m3/s) C.V. 1

Obs Sim Obs Sim Obs Sim Obs Sim

San Agustín 0.45 2.79 2.77 0.82 0.53 0.63 2.74 2.57 0.71 0.40
Ojos de Agua 0.54 0.83 0.85 0.70 0.40 0.58 0.84 0.72 0.73 0.39

Cuestecita 0.63 1.60 1.66 0.92 0.70 0.63 1.79 1.32 1.02 0.77
Las Ramadas 0.72 3.93 3.97 0.92 0.77 0.67 4.72 3.29 0.80 0.71

Desembocadura 0.61 1.32 1.35 1.16 0.99 0.51 1.61 1.06 1.04 0.77
Fragüita 0.84 2.38 2.43 1.27 1.00 0.71 3.04 3.08 0.75 0.68

1 C.V. Coefficient of variation = annual standard deviation/annual mean, NSE = Monthly Nash-Sutcliffe efficiency
index (Nash and Sutcliffe, 1970).

More formally, the system operation is expressed as follows. The stored volume St+1
j (m3)

in reservoir j at the beginning of year t + 1 is

St+1
j = St

j −Ot
j + It

j − Et
j − Spt

j (1)

where O, I and Sp are the outflow, inflow, and spilled water, respectively (m3). For this
study, and as depicted in Section 3, inflows (I) are obtained from the WEAP hydrological
model, which simulates synthetic streamflows using future climate projections. E is the net
evaporation from the reservoir (m3):

Et
j = At

j

(
et

j − Pt
j

)
(2)
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where e is the evaporation rate (m) estimated from meteorological data, P is the precipita-
tion (m), and A is the surface area (m2) for reservoir j during year t, associated with the
current storage elevation, which in turn is also related to the water storage volume. Given
that the stored water St

j cannot exceed the maximum storage capacity MSj, the spilled water
(Spt

j ) from Equation (1) is excess water that the reservoir is not able to store (Equation (4)).
Moreover, usable stored water St

j is restricted by the dead storage DS (m3), which is the
storage under the lowest discharge outlet, and hence cannot be used:

DSj ≤ St
j ≤ MSj (3)

Spt
j = Max

(
St

j −Ot
j + It

j − Et
j −MSj, 0

)
(4)

Although the relation between surface area and water stored in the reservoirs may
change through time, for simplification we assume the original design for each reservoir
(i.e., dead storage, maximum storage and the relationship between the surface area and the
stored volume) to remain constant.

The water allocated in year t + 1 (Ot+1
j ) is a function of the stored water in the system

composed of M reservoirs at year t (St
T =

M
∑

j=1
St

j ), where St
j is obtained from Equation (1).

If St
T overpasses a threshold or restrain bound (RB), a fixed amount αj is allocated from

reservoir j. Otherwise, the allocated water is a fraction r of the storage.

Ot
j =


αj if St

T ≥ RB
rSt

j if DSj ≤ St
T < RB

0 if 0 ≤ St
T < DSj

. (5)

Ferrer et al. [93] determined values of α = 240, 40 and 40 Mm3 for the Paloma, Recoleta,
and Cogotí reservoirs, respectively, as well as values of RB = 500 Mm3 and r = 0.5. Thus,
if the system storage exceeds 500 Mm3, the maximum allowed annual water allocation is
320 Mm3. Otherwise, half of the stored water is allocated. Note that, although it may be
uncommon for other places, the reservoir operation is based on an annual decision, which
has been successfully used for more than four decades. As we aim to evaluate when climate
change may significantly impair their performance, identifying the timing for adaptation
strategies to be implemented, we need to assess the current reservoir operation rule instead
of a theoretical or optimized new operation that could be defined at a different time scale
(monthly or other). Furthermore, changing water allocation goals might not be simple in
Chile, as according to the 1981 Water Code water use rights are legally treated as real state
private property, which are granted to perpetuity. Hence, modifications in the Water Code
may be needed prior to changes in the allocation.

3. Methodology

Several methods and tools are used in this study to analyze the relation between
climate, hydrology, the reservoir system, and its performance. An already developed
hydrological climate-driven model implemented in the Water Evaluation and Planning
(WEAP) system [94,95] was updated and calibrated using historical monthly runoff data.
This model is utilized to generate streamflow scenarios for the operation of the reservoirs’
system using synthetic local climate projections as input. For the generation of these
projections, precipitation, and temperature data for the period 1971–2100 from 49 runs of
GCMs (Appendix A) and the four RCPs (i.e., 149 climate projections) were downscaled with
a weather generator. Finally, the performance of the reservoirs’ system under this set of
streamflow scenarios was characterized through performance indexes. Figure 2 depicts the
methodology, with a special focus on the implementation of Equations (1)–(5) to simulate
the reservoirs’ operation, particularly the water allocation. Details of the methodology are
presented in the subsections below.
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3.1. Hydrological Modeling

WEAP uses climate information as input to generate streamflow following a semi-
distributed approach. In the model, elevation bands are used as hydrological units where
climate, soil, topography, and land use characteristics are specified. A WEAP model already
set up for the Limarí Basin by Vicuña et al. [40,41] was re-calibrated and used in this study.
The re-calibration used the most recent years (1985–2011), leaving the period 1969–1984
for validation. Because this approach allows obtaining calibration parameter from a more
recent period, the time lag between the periods of calibration and simulation using to future
climate projections is reduced, and more reliable hydrologic simulations are obtained [96].
Overall, the simulated and observed hydrographs are similar, and satisfactory Nash–
Sutcliffe efficiency (NSE) coefficient values [97] were obtained for the different streamflow
gauges (Table 2); furthermore, observed and simulated average annual flows are very
similar for the calibration period. The model tends to underestimate the annual flow for
the validation period, while the coefficient of variation (CV) is underestimated for the
entire historic period mainly due to the underestimation of the extreme discharge values
during very humid months. Given that extreme discharges tend to produce water spills
in the reservoir operation, the underestimation of them does not affect the performance
of the simulation of the operation rule. In the validation period the NSE value improves,
compared to the calibration period for the San Agustín and Ojos de Agua gauges, is



Water 2021, 13, 64 8 of 27

maintained for Cuestecita gauge and decreases for Las Ramadas, Desembocadura, and
Fragüita gauges (Table 2). Flow discharges simulated at the San Agustin gauge are the least
satisfactory (Figure 3). This gauge receives contributions from the highest elevations in the
basin (>5000 m) where reliable meteorological measurements are scarce. Nonetheless, even
at this gauge low flows (i.e., the most relevant flows for the long-term simulation of the
basin) are well simulated. Moreover, Table 2 shows good simulations associated with the
main tributaries contributing to the system (i.e., Las Ramadas, Fragüita, and Cuestecita).
These contributions explain most of the inflows to Cogotí and Paloma reservoirs, which
represent 90% of the system storage volume. For a more detailed description of the
implemented WEAP model, readers are referred to the references by Vicuña et al. [40,41].
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Figure 3. Observed vs. simulated monthly discharges for the period 1969–2011 at the San Agustin gauge in the Hurtado
River.

3.2. Development of Climate Change Scenarios

Under the premise that many GCMs are needed to characterize the uncertainty
when analyzing climate change impacts, this study considered 49 GCMs realizations
(Appendix A) and the RCPs 2.6, 4.5, 6.0, and 8.5 [98,99]. GCMs’ projected precipitation
and temperature series were downscaled using a weather generator downscaling method,
obtaining 200 synthetic time series of climates, under each RCP scenario, for the period
1970–2100. In the first step, GCM outputs are interpolated using inverse square distance to
the ground weather station locations.

The Chadwick et al. [90] annual weather generator downscaling method was adopted,
which considers (1) the extraction of long-term trends from the changes of the mean
and the standard deviation from a GCM group, and (2) the generation of annual climate
(i.e., precipitation and temperature) time series based on these trends, and the historical
observed climate between 1971 and 2005. The trends are extracted from the changes of a
GCM group for each RCP. Changes in the precipitation mean from the GCM projection G
are obtained by the ratio between the moving averages of the GCM precipitation (MAPt,G)
and the average from the GCM control period (APto,G), where t and to are the last year of
the moving window and the control period, respectively. This ratio is called normalized
moving average (NMAPt,G). The trends are built using all the NMAPt,G from each RCP.
For each year t an empirical cumulative distribution function (CDF) of all the NMAPt,G
is fitted. Finally, the trend percentile with a non-exceedance probability p1, NMAPt,p1,
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is obtained from the CDFs of each year. Note that NMAPt,p1
corresponds to a statistical

mapping of the changes from a GCM group, and several trend percentiles can be used to
map the dispersion among the group of GCM results.

An analogous process is undertaken for the standard deviation of the precipitation.
The trend percentile of the standard deviation (NMSDPt,p2) with a non-exceedance prob-
ability p2 is randomly generated considering the average correlation with the trend per-
centile p1 of the mean, which is chosen. For temperature, a similar process for extracting
the trends is applied, but the normalized moving difference between moving average of
temperature and the average of the control period of the GCM is used instead. Moreover,
the non-exceedance probability p3 and p4 for the change of the mean and the standard devi-
ation of the temperature, are also randomly generated considering their average correlation
with the trend percentile p1 of NMAPt,p1

.
For the generation of annual climate series data, in each station of interest probability

distribution functions (PDFs) fY(y, θ) are fitted to the observed annual records of the
variable Y (temperature or precipitation) through estimation of the parameter set θ using
the mean µ, and standard deviation σ. These PDFs are combined with the GCMs trend
percentiles, case in which the parameter set θ change in time according to the GCMs. Hence,
this is a GCM ensemble that incorporates the natural variability. Under this approach, the
value of the climatic variable at any time for a given p and RCP is the value obtained from
the PDF, but with mean µ∗ and standard deviation σ∗ that change through time according
to the trends:

Yt,i,p1
= F−1

Y (u, θ) = F−1
Y (u,µ∗(t, p1),σ

∗(t, p2)) (6)

where u is a random uniform number [0,1], and Yt,i,p1
is the ith annual precipitation value

randomly generated, using the trend percentile p1 of the mean, for a non-stationary climate.
The value of µ∗ and σ∗ in Equation (6) at any particular year t for precipitation are calculated
from the historical mean (µ) and standard deviation (σ) and the multiplicative normalized
change rates:

µ∗(t, p1) = µ·NMAPt,p1
(7)

σ∗(t, p2) = σ·NMSDPt,p2
(8)

For temperature, a similar equation is used, but µ∗ and σ∗ are obtained using the
additive changes rates, and probabilities p3 and p4:

µ∗
(
t, p3

)
= µ+ DMATt,p3

(9)

σ∗(t, p4) = σ+ DMSDTt,p4
(10)

Finally, to disaggregate the annual data generated with the weather generator into
monthly data, we used the k-Nearest Neighbor (k-NN) method, similar to the one uti-
lized by [100]. Following the heuristic approach adopted elsewhere [101,102], a value of
k =
√

L ≈ 6 was used in the implementation of the k-NN method, in which L is the length
of the historical record (i.e., 35 years). For the disaggregation, we have the annual synthetic
generated climate for several climate stations (precipitation and temperature) and we also
have the historical observed monthly climate at the same stations. To disaggregate one
year of the synthetic climate, we sort in ascending order, the historical years of climate,
according to the Euclidian distance between the annual data of each historical year and the
synthetic year. For this purpose, equal weighting factors were used for each station, given
that we previously standardized the synthetic and observed climate data by subtracting
the historical mean and dividing by the historical standard deviation. Then a historical
year is chosen by using the k-NN method [101], which is then used to disaggregate annual
synthetic climate into monthly climate. The process is repeated for each synthetic year to
disaggregate the whole synthetic series. Given that the annual value of the historical year
and the synthetic year to be disaggregated not necessarily match, there is a post adjustment
by multiplication and addition in the case of precipitation and temperature, respectively.
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As explained above, using trend percentiles allows mapping the dispersion of the
group of GCM runs for each RCP and the local climate information. Ten equally spaced
trend percentiles for the changes in the precipitation mean are adopted, as recommended
by Chadwick et al. [90], while the trend percentiles of the precipitation standard deviation,
temperature mean and standard deviation, are randomly selected considering the corre-
lation among them [90]. For each trend percentile 20 synthetic realizations are generated,
adding the total of 200 synthetic realizations for each RCP scenario.

3.3. Performance Indexes

First, satisfactory and unsatisfactory states must be defined to assess the system
performance. A satisfactory state is that when the total annual demand (D) is met,
whereas the system falls into an unsatisfactory state or failure when D is not satisfied.
Hence, the Paloma system is on failure when the long-term expected annual water al-
location is under D = ∑M

j=1 αj = 320 Mm3 (see Equation (5)). The performance criterion
used are the RRV indexes proposed by Hashimoto et al. [27], and widely used in the
literature [28,29,31,46,55,103–108].

Time-based Reliability (RelT) measures how often the system fails. This index is
calculated as the percentage of time (0–1 range) that the system can meet D in the n years
under evaluation:

RelT = 1− ∑n
t=1 Zt

n
(11)

where Zt counts the number of years at failure:

Zt =


0 if

M
∑

j=1
Ot

j = D = 320 Mm3

1 if
M
∑

j=1
Ot

j < D = 320 Mm3
(12)

where Wt equals 1 each time step in which the system passes from failure to success and

0 if it stays on failure. Hence,
n
∑

t=1
Wt ≤

n
∑

t=1
Zt, which ensures a Res range between 0 (no

recovery from failure or always in failure) to 1 (immediate recovery from failure or never
in failure).

The Volume-based Reliability (RelV) [55,109] was also used in the analysis:

RelV =

(
∑n

t=1 ∑M
j=1 Ot

j
n

)
D

(13)

hence, RelV ranges between 0 and 1 and measures the mean percentage of water allocated
by the system compared to D.

Following the approach by [106,107], two indexes for vulnerability were used: (1) the
maximum vulnerability or maximum water deficit (MaxV) as used by Moy et al. [32], and
(2) the average vulnerability or average water deficit (AvgV). Both indexes range between
0 and 1, and are

MaxV =
max(vt)

D
(14)

where

vt = D−
M

∑
j=1

Ot
j ≥ 0 (15)

AvgV =

(
∑n

t=1 vt

n

)
D

(16)

In Equations (14) and (16), vulnerability values are standardized by D.
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4. Results and Analysis
4.1. Climate Change Hydrological Impacts

Future annual precipitation and reservoir inflow projections are presented in
Figures 4 and 5 for the la Paloma reservoir. Both figures show the 25th, 50th, and 75th
percentiles of the time series averaged over a 40-year moving window. Precipitation starts
with 117 mm (50th percentile) by year 2010 (Figure 4) and decline in time to 107 mm, 99 mm,
97 mm, and 88 mm, by the end of the century under RCPs 2.6, 4.5, 6.0, and 8.5, respectively;
these changes correspond to reductions of −8.5%, −15.4%, −17.1%, and −24.7%, respec-
tively. Furthermore, larger declines are observed for higher percentiles, regardless the RCP;
for example, under RCP 2.6 reductions of 9, 10, and 19 mm are obtained for the 25th, 50th,
and 75th percentiles, respectively. Hence the climate is projected to become drier, with
larger precipitation reductions for the rainy years.
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Figure 4. Projected precipitation for the Paloma Embalse station gauge (320 m a.s.l., 30◦41′48′′ S, 71◦02′18′′ W) under RCP
2.6 (a), 4.5 (b), 6.0 (c) and 8.5 (d). The 25th (dotted line), 50th (solid line), 75th (dashed line) of annual percentiles is averaged
over a 40-year moving window, with the horizontal axis being the last year of the window.

The impacts of these precipitation changes over the incoming streamflow to the
Paloma reservoir is magnified (Figure 5). The 50th percentile of the inflow goes from
245 Mm3 by 2010, to 218, 179, 179, and 147 Mm3 by 2100 under RCPs 2.6, 4.5, 6.0, and 8.5,
respectively; these changes correspond to reductions of −11.4%, −27.2%, −25.1%, and
−40.7%, respectively. Just as for precipitation, the absolute decline is greater for higher
percentiles. For example, under RCP 2.6 the inflows to the Paloma are projected to diminish
in 9, 28 and 82 Mm3 for the 25th, 50th, and 75th percentile between years 2010 and 2100.

Similarly, inflows to the Cogotí and Recoleta reduce through time, as shown in
Figures S1 and S2 in the Supplementary Material. Nonetheless, these reductions are even
larger, most likely because the contributing areas to these reservoirs are located at higher
elevation. Starting with a 50th percentile value of 95 Mm3 in 2010, inflows to the Cogotí
reservoir decrease to 73, 60, 60, and 48 Mm3 by 2100, under RCPs 2.6, 4.5, 6.0, and 8.5
respectively (Figure S1). These are reductions of −23.2%, −36.8%, −35.5%, and −49.5%, re-
spectively. Likewise, 50th percentiles inflows to the Recoleta reservoir reduce form 60 Mm3

in 2010 to 35, 17, 17, and 12 Mm3 by 2100, under RCPs 2.6, 4.5, 6.0, and 8.5, respectively.
These are reductions of −58.3%, −71.2%, −71.2%, and −80.0%, respectively.

Overall, the basin is expected to have a drier future, as concluded by previous studies
in the basin [40,41,90]. Interestingly, projected reductions in reservoirs inflow surpass
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those expected for precipitation, especially in the upper basin. Moreover, reductions in
precipitation and streamflow are greater for higher percentiles, which implies fewer very
humid years in the future. This decline is quite relevant because the reservoirs are filled
precisely during these very humid years.
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Figure 5. Projected inflow to the Paloma reservoir under RCP 2.6 (a), 4.5 (b), 6.0 (c), and 8.5 (d). The 25th (dotted line), 50th
(solid line), 75th (dashed line) of annual inflows to the Paloma reservoir are averaged over a 40-year moving window, with
the horizontal axis being the last year of the window.

4.2. Long-Term Impacts over Reservoir Operation

Changes in the RRV performance are analyzed using a 40-year moving window during
the 1971–2100 period. The objective is to show in a simple, yet comprehensive manner,
how and when future reservoir performance is expected to considerably worsen, and the
corresponding uncertainty around this estimation. Thus, the performance associated with
any particular year considers the last 40 years of operation. The dynamics of the positive
performance metrics (i.e., RelT, Res and RelV) are shown in Figures 6–8, whereas that of
the negative performance metrics (i.e., MaxV and AveV) are shown in Figures 9 and 10.
To illustrate the use of thresholds to identify the time at which sever impacts in the
system’s operation occur, we adopted in these figures two referential values that are
intuitive and easy to follow in decision-making. The first threshold corresponds to the
historical reference RRV performance calculated from the first 40 years of operation between
1971 and 2010 (thick dashed lines). The second threshold indicates a 10% worsening of
the reference historical RRV performance (thick dotted line). Note however that any
threshold value may be used, which can reflect for example a decision by the regulator or
operator, a local regulation, or a hypothetical scenario. Following the recommendations
from McMillan et al. [87] the uncertainty through time associated with the variety of GCMs
is presented in each figure using the 25th, 50th, and 75th percentiles of the corresponding
performance indexes (thin dotted, solid, and dashed lines, respectively). To analyze the
potential errors of using just 200 synthetic time series per RCP, a bootstrapping analysis was
performed as explained in Text S1. The results of the bootstrapping analysis are presented
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in Figures S3–S12 in the Supplementary Material. Note that the possible errors that may be
produced by using only 200 synthetic time series per RCP are quite small (Figures S3–S12).

Water 2021, 13, x FOR PEER REVIEW 13 of 28 
 

 

4.2. Long-Term Impacts over Reservoir Operation 

Changes in the RRV performance are analyzed using a 40-year moving window dur-

ing the 1971–2100 period. The objective is to show in a simple, yet comprehensive manner, 

how and when future reservoir performance is expected to considerably worsen, and the 

corresponding uncertainty around this estimation. Thus, the performance associated with 

any particular year considers the last 40 years of operation. The dynamics of the positive 

performance metrics (i.e., RelT, Res and RelV) are shown in Figures 6–8, whereas that of 

the negative performance metrics (i.e., MaxV and AveV) are shown in Figures 9 and 10. 

To illustrate the use of thresholds to identify the time at which sever impacts in the sys-

tem’s operation occur, we adopted in these figures two referential values that are intuitive 

and easy to follow in decision-making. The first threshold corresponds to the historical 

reference RRV performance calculated from the first 40 years of operation between 1971 

and 2010 (thick dashed lines). The second threshold indicates a 10% worsening of the ref-

erence historical RRV performance (thick dotted line). Note however that any threshold 

value may be used, which can reflect for example a decision by the regulator or operator, 

a local regulation, or a hypothetical scenario. Following the recommendations from 

McMillan et al. [87] the uncertainty through time associated with the variety of GCMs is 

presented in each figure using the 25th, 50th, and 75th percentiles of the corresponding 

performance indexes (thin dotted, solid, and dashed lines, respectively). To analyze the 

potential errors of using just 200 synthetic time series per RCP, a bootstrapping analysis 

was performed as explained in Text S1. The results of the bootstrapping analysis are pre-

sented in Figures S3–S12 in the Supplementary Material. Note that the possible errors that 

may be produced by using only 200 synthetic time series per RCP are quite small (Figures 

S3–S12). 
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Figure 6. Time-based reliability under RCP 2.6 (a), 4.5 (b), 6.0 (c), and 8.5 (d) for a 40-year moving window, with the
horizontal axis being the last year of the window. The thick dashed and dotted lines represent the reference historical
performance and 10% worse-than-the-reference value, respectively.
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Figure 7. Resilience under RCP 2.6 (a), 4.5 (b), 6.0 (c), and 8.5 (d) for a 40-year moving window, with the horizontal axis
being the last year of the window. The thick dashed and dotted lines represent the reference historical performance and 10%
worse-than-the-reference value, respectively.
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Figure 8. Volume-based reliability under RCP 2.6 (a), 4.5 (b), 6.0 (c), and 8.5 (d) for a 40-year moving window, with the
horizontal axis being the last year of the window. The thick dashed and dotted lines represent the reference historical
performance and 10% worse-than-the-reference value, respectively.
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Figure 9. Maximum vulnerability under RCP 2.6 (a), 4.5 (b), 6.0 (c), and 8.5 (d) for a 40-year moving window, with the
horizontal axis being the last year of the window. The thick dashed and dotted lines represent the reference historical
performance and 10% worse-than-the-reference value, respectively.
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Figure 10. Average vulnerability under RCP 2.6 (a), 4.5 (b), 6.0 (c), and 8.5 (d) for a 40-year moving window, with the
horizontal axis being the last year of the window. The thick dashed and dotted lines represent the reference historical
performance and 10% worse-than-the-reference value, respectively.

4.2.1. Positive Performance Metrics

According to Figure 6, and regardless the RCP considered, time-based reliability
worsens through time, with values being lower than the historical reference value of 0.81, a
value that is relatively close to the 0.85 considered in the Chilean regulation as the objective
time-based reliability [92]. Nonetheless, time-based reliability varies considerably for the
different RCPs, with values around 0.53, 0.45, 0.45, and 0.38 estimated under RCPs 2.6, 4.5,
6.0 and 8.5, respectively, for the 50th GCM percentile by the end of the century. Under
RCP 2.6 the interquartile range (i.e., between the 25th and 75th percentile) in 2011 (0.14
between 0.75 and 0.89) doubles by year 2100 (0.29 between 0.39 and 0.68). Under RCP 4.5,
the values for the same percentiles go from 0.75–0.88 (i.e., range of 0.13) in 2011 to 0.29–0.60
(i.e., range of 0.31) in 2100. For the RCP 6.0, the values for the percentiles 25th and 75th go
from 0.73–0.88 (i.e., range of 0.15) in 2011 to 0.28–0.63 (i.e., range of 0.35) in 2100. Under
RCP 8.5, the values for the same percentiles go from 0.73–0.88 (i.e., range of 0.15) in 2011 to
0.20–0.58 (i.e., range of 0.38) in 2100. Overall, the uncertainty of the time-based reliability
due to the different GCM increases with time and RCP.

The resilience index for the future period under the four RCPs shows a negative
trend with values below the historical resilience of 0.45 (Figure 7). As expected, the future
resilience is the best for RCP 2.6 and decreases for the other RCPs. The resilience values for
the 50th percentile by 2100 are 0.25, 0.22, 0.22, and 0.19, under RCPs 2.6, 4.5, 6.0, and 8.5,
respectively. Thus, the probability of recovering from a failure under RCP 4.5 or higher
will be less than half of what it used to be in 2011. Interestingly, the interquartile range of
resilience values predicted by the end of the century is smaller than that in 2011, regardless
the RCP.

Just as for the other indexes, the volume-based reliability significantly changes under
different RCP scenario (Figure 8). The 50th percentile of this index under RCP 2.6 reaches a
value of 0.84 by the end of the century, whereas the 25th percentile reaches a value of 0.75
(Figure 8a). Thus, the future performance does not significantly worsen under the lowest
emission scenario, compared to the historical reference value of 0.92. The 50th percentile of
the volume-based reliability by 2100 are 0.78, 0.78, and 0.73, under the RCPs 4.5, 6.0, and
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8.5, respectively. As in the case of the time-based reliability (Figure 6), the uncertainty of
the volume-based reliability increases with time and with the RCPs. The values of the 25th
and 75th percentiles of this metric for the year 2100 are 0.75–0.91 for RCP 2.6, (Figure 7a),
which significantly decrease if higher RCP scenarios are considered: 0.67–0.89 (RCP 4.5,
Figure 7b), 0.67–0.88 (RCP 6.0, Figure 8c), and 0.57–0.86 (RCP 8.5, Figure 8d). Thus, the
interquartile ranges for year 2100 are 0.16, 0.22, 0.21, and 0.29, under the RCPs 2.6, 4.5, 6.0,
and 8.5, respectively.

Given that reductions for the 75th percentile of both precipitation and inflows to
the reservoirs are larger than for the 25th percentile (Figures 4 and 5, Figures S1 and S2),
the interquartile range for these variables reduces throughout the century. Nevertheless,
the interquartile range for both the time-based and volume-based reliabilities increases
(Figures 6 and 8). This interesting result illustrate the importance of using reservoir
performance indexes to understand the impacts of climate change, as the changes and
uncertainties in the raw hydro-climatological variables are not necessarily the same, or
transferable, as those for the operational variables defining the performance of water
systems in general, and reservoirs in particular.

4.2.2. Negative Performance Metrics

According to Figure 9, the maximum vulnerability increases under the RCP 2.6 sce-
nario, beyond the historical reference value of 0.68, but without surpassing the “Reference + 0.1”
threshold (thick dotted black line, Figure 9a). For the other RCPs, the maximum vulnerabil-
ity worsens in the future beyond this threshold. Nevertheless, this severity has not been an
issue yet, as reservoir design in Chile relays mostly on ensuring the time-based reliability.
The future maximum vulnerability reaches values larger than 0.80 for the 50th percentile
under RCPs 4.5, 6.0, and 8.5, which indicates that severe droughts are projected during
the following decades. While a worse future is clearly predicted in terms of the maximum
vulnerability index (Figure 9), the average vulnerability behaves differently (Figure 10).
Under the four RCPs, the average vulnerability clearly improves by mid-century (2060),
with a reduction for the 50th percentile from 0.45 (historical reference), to 0.36, 0.37, 0.38,
and 0.36 by year 2060 for RCPs 2.6, 4.5, 6.0, and 8.5, respectively. By the end of the century,
the average vulnerability continues improving for RCP 2.6, while for RCPs 4.5 and 6.0 it
slightly worsens, although not beyond the reference value of 0.45. For RCP 8.5, the 50th
percentile average vulnerability by the end of the century equals the reference value. It is
noteworthy that, although the number of failures will likely increase in time (Figure 6), the
severities of these failures are expected to reduce by the middle of the century (Figure 10).
Most likely the average vulnerability improves because the time-based reliability (Figure 6)
worsens more than the volume-base reliability (Figure 8), hence the failures become more
recurrent, but less severe. Nevertheless, the maximum failure increases (Figure 9), so
even if the average failure (Figure 10) is not as bad, the worst drought is expected to be
worse. Note, that all these results depend on the reservoir operation rule; thus, if the
current reservoir operation rule is modified, the expected consequences will need to be
re-evaluated.

4.3. The Timing of the Changes in Performance: When Current Management Will Become Obsolete?

To identify the time when the current reservoir operation rule is no longer able to
maintain the historical reference performance (i.e., time of emergence, ToE), we compute
the first year in which the 50th percentile of each performance index exceeds a 10% worse-
than-the-reference value, without going back (Table 3). Table 3 also shows in parenthesis
the 80% confidence range for the 50th percentile emergence (i.e., 10% and 90% of error),
estimated with the bootstrapping (Figures S3–S12 in the Supplementary Material). Under
RCP 2.6 the ToE for the time-based reliability and resilience indexes is identified within the
century, while for the other indexes it is not. Moreover, the ToE for the average vulnerability
does not take place in this century for any of the four RCPs. Under RCPs 4.5 and above, the
ToE detected for each index are clearly different: the time-based reliability overpasses the
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threshold between years 2028 and 2033, the resilience diverges from the reference between
2034 and 2042, whereas the volume-based reliability does so between 2072 and 2083, and
the maximum vulnerability index overpass the reference threshold between 2068 and 2079.
Overall, under RCPs 4.5 and above, Table 3 shows that the 10% worse-than-the-reference
value is exceeded during the 2030s in terms of the time-based reliability, the 2030s and
2040s in terms of the resilience, the 2080s in terms of volume-based reliability, and the 2070s
in terms of maximum vulnerability.

Table 3. First year in which, for each RCP and performance index, the 50th percentile reservoir perfor-
mance exceeds a 10% worse-than-the-reference value without going back. In parenthesis are the same
result, but for the 10% and 90% of error estimated with the bootstrapping (Supplementary Material).

Time Reliability Resilience Volume Reliability MaxV AvgV

RCP 2.6 2041 (2037–2043) 2051 (2044–2054) >2100 >2100 >2100
RCP 4.5 2028 (2025–2036) 2034 (2030–2036) 2083 (2079–2088) 2079 (2065–2087) >2100
RCP 6.0 2034 (2025–2038) 2039 (2032–2048) 2082 (2074–2094) 2078 (2070–2084) >2100
RCP 8.5 2033 (2029–2037) 2042 (2040–2047) 2072 (2068–2079) 2068 (2062–2073) >2100

If the 25th and 75th percentiles are used instead the 50th percentile to analyze the ToE,
we can appreciate the uncertainty associated with the results. For example, the time-based
reliability under RCP 2.6, overpass the threshold on years 2016 and 2067 for the 25th and
75th percentile (Figure 6a), respectively. Under RCP 8.5 the years are now 2013 and 2057 for
the same percentiles (Figure 6d). For the volume-based reliability (Figure 8) under RCP 8.5,
the ToE for the 25th percentile is year 2047, but for the 75th percentile it happens after 2100.
The maximum vulnerability threshold for the 25th percentile (Figure 9) is not overpassed
by any RCP during this century. Overall, the large time range detected when using the
25th and 75th percentile illustrates how difficult it is to identify a single year in which the
reservoir performance will stop performing as expected historically, rather only a range of
many years can be identified. This issue is further discussed by Chadwick et al. [83].

A comparison of the values in Table 3 against the 50th percentile Local ToE estimates
for precipitation and temperature in the same basin [83] shows that deviations from the
historical behavior of the reservoir performance, measured using time-based reliability
or resilience, occur slightly before than for precipitation. On contrary, ToE takes place
after when considering other performance indexes. For example, the time-based reliability
performance for the 50th percentile (Figure 6) worsens before 2040 for RCPs 4.5 and 8.5,
while changes in precipitation in the basin happen around 2040 [83]. Such difference is
likely caused in part by the early emergence of changes in temperature. Interestingly,
the ToE for the volume-based reliability under RCP 4.5 and above (Figure 8) happens
during the 2080s for the 50th percentile, while changes in precipitation emerge earlier [83].
Nevertheless, further analysis is needed, given the larger uncertainty in the timing of
changes in reservoir performance, as there are more steps involved in the cascade of
uncertainty associated with the calculations [42]. Moreover, the results from our analysis
allows detecting ToE that differ among the different performance indexes. In our case
for example, time-based reliability (Figure 6) is affected before the volume-based one
(Figure 8), and thus adaptation measurements should be taken before the occurrence of
significant changes in volume-based water allocation.

Overall, our approach and results are presented as a replicable method to inform deci-
sion makers—in a clear, simple, and useful manner—about the impacts of climate change
through time over the performance of a reservoir operation rule. In particular, by defining
an easy-to-follow and intuitive percentage worse-than-the-reference value to evaluate the
performance, one can identify the time of obsolescence of the current operation rule under
a climate change scenario (i.e., a local ToE of the reservoir performance). Furthermore, our
approach allows transmitting the uncertainty to water managers and practitioners using
uncertainty bands or alike, something recommended in the literature in recent years [87].
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4.4. Adaptation Strategies

Although the main objective of this article is to depict an approach to identify the time
at which the performance will drop beyond a defined threshold due to climate change
under the current operation rule (i.e., ToE of reservoir performance), we now explore in
a simple manner the implications of possible adaptations strategies. It is not our goal to
optimize the operation rule, but to illustrate how the approach allows understanding the
effect of varying the operation rule (i.e., reduction of water allocation goals) to cope with
the increasing water scarcity of the basin. Given that the most severe changes and earlier
emergences are expected under RCP 8.5, we use this scenario for the analysis. In particular,
we explore the effects of implementing different reductions in water allocation goals in year
2033, when the first emergence is detected for this RCP. For example, Figure 11 compares
the performance indexes obtained when the water allocation goals are reduced to 205, 35,
and 35 Mm3, for the Paloma, Cogotí, and Recoleta reservoirs, respectively (green lines),
against the reference case in which the operation rule remains the same (red lines). For
this case, the impacts of the change in the rule differ depending on the index. Resilience
is barely affected, while both vulnerability metrics are reduced to the point that the 50th
percentile MaxV and AvgV remain respectively within the ±0.1 reference and the reference
thresholds by 2100.
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Figure 11. Performance indexes obtained using the current operation rule (red) and a reduced allocation goal implemented
the ToE year (2033) as an adaptation strategy (green). The adaptation (current) allocation goal is 205 (240), 35 (40), and 35 (40)
Mm3, for the Paloma, Cogotí, and Recoleta reservoirs, respectively. Indexes include the time-based reliability (a), resilience
(b), volume-based reliability (c), maximum vulnerability (d) and average vulnerability (e), for a 40-year moving window,
with the horizontal axis being the last year of the window. The thick dashed and dotted lines represent the reference
historical performance and 10% worse-than-the-reference value, respectively.
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Similar results to those shown in Figure 11 can be calculated for other reductions in
the allocation goals (not shown here). To summarize these results, Table 4 presents the
first year in which the 50th percentile reservoir performance indexes values exceed a 10%
worse-than-the-reference value without going back, under RCP 8.5, for different adaptation
strategies (i.e., reductions in annual water allocation goals) as shown in columns 1–4. As
expected, for each index the year in which the threshold is exceeded delays with larger
reductions in water allocation goals. Nevertheless, in order for the system to perform as
originally expected throughout the 21st century, reductions of 40–50% of the original system
allocation goal are needed. Such reductions may be extremally difficult to implement in
the basin, and thus the eventual adaptation process may require the strong involvement of
stakeholders and the compromising of current expectations.

Table 4. First year in which, for different allocation goal reductions, the 50th percentile reservoir performance exceeds a 10%
worse-than-the-reference value with no turning back under RCP 8.5. Columns 1 and 2 show annual allocation goals for
each reservoir, and columns 3 and 4 show the corresponding system allocation goal as volume and as a percentage of the
original 320 Mm3.

Water Allocation Goal Performance Indexes

Paloma (Mm3)
Recoleta and
Cogotí (Mm3) System (Mm3)

Allocation Goal
as % of 320 Mm3 RelT Resilience RelV MaxV AvgV

240 40 320 100% 2033 2042 2072 2068 >2100
205 35 275 86% 2033 2044 2097 2091 >2100
170 30 230 72% 2059 2056 >2100 >2100 >2100
145 25 195 61% 2096 >2100 >2100 >2100 >2100
120 20 160 50% >2100 >2100 >2100 >2100 >2100

5. Conclusions

This study assessed the operation of a reservoir system using the RRV performance
indexes during the 21st century under climate change. Considering the ongoing water
scientist’ challenge of communicating climate change results in a usable way for water
managers, the results focus on providing a clear response to the decision-making question:
when current operation rules will significantly impair their performance due to climate
change impacts?

For this purpose, the future performance of the Paloma reservoir system in the Limarí
River basin, Chile, was evaluated using a 40-year moving window for the period 1971–2100.
Using a weather generator, GCMs outcomes were downscaled to produce climate series
that served as input to an already set up WEAP hydrological model, which was utilized
to simulate streamflows. These flows were used to model the performance of the histori-
cal and future operation of the reservoir system under the current operation rule, which
was characterized using percentiles of the RRV indexes. For illustrative purposes, this
performance was defined to be deficient when the RRV indexes worsen more than a 10%
as compared to the historical values; however, any other threshold can be selected by the
operator or the decision maker. The approach adopted in this study allows estimating the
impacts of climate change while accounting for three sources of uncertainty: (a) aleatory
uncertainty, i.e., the natural variability represented by intra-GCM uncertainties, (b) epis-
temic uncertainty, i.e., as represented by the spread of multi-GCM ensembles, and (c) deep
uncertainty, i.e., as represented by the choice of RCP scenario. Note that the methodology
here presented treats aleatory and epistemic uncertainties in a risk analysis, while deep
uncertainty is properly presented. Thus, we aimed to clearly disentangle and communicate
the impacts of climate change from the very considerable noise of these three sources of
uncertainty. Our main conclusions are the following:

- Precipitation reductions are projected in the basin due to climate change. While
inflows to the reservoirs are also projected to diminish, there is an amplified response
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of streamflows, which will reduce even more than precipitation, especially in the
upper basin.

- The time-based reliability of the Paloma system will deteriorate significantly in the
future, even for an optimistic percentile (75th), under all the RCP scenarios. The
volume-based reliability will also reduce, except for the RCP 2.6 scenario. Thus, miti-
gation measures become key to ensure an adequate reservoir system’s performance
during the next decades.

- Counterintuitively, although the projected time-based and volume-based reliability
worsen in time, the average vulnerability stays around the historical value by the
end of the century. In fact, the average vulnerability improves by mid-century (2060)
regardless the RCP scenario, and tends to go back to the reference for RCPs 4.5
and above.

- The range of GCMs uncertainty increases for the time-based and volume-based relia-
bility, both with time and RCP scenario (i.e., RCP uncertainty decreases from RCP 8.5
to RCP 2.6). On the other hand, this range decreases with time for precipitation and
reservoir inflows, while staying quite constant with the RCP.

- The emergence was detected much earlier for the time-based reliability than for the
volume-based one. Hence a new operation rule will be needed earlier if the time-
based reliability is considered as the predominant performance metric. Indeed, this
is the case in Chile, and thus the current operation rule should be changed in the
2030s. Nevertheless, the best timing to change the operation rule still depends on the
RCP scenario, as well as the performance threshold, which should be discussed and
defined by decision makers.

- Deviations from the historical behavior of the reservoir performance measured using
time-based reliability or resilience, occur slightly before than precipitation changes.
On contrary, these deviations take place after when considering other performance
indexes (i.e., volume-based reliability and maximum vulnerability). Hence, the iden-
tification of the ToE of variables other than the climatic ones (i.e., precipitation and
temperature) that are more directly related to water resources availability becomes
relevant. Nonetheless, such identification is more uncertain as more steps in the
cascade of uncertainty are involved.

- For the Paloma system to perform as originally expected throughout the 21st century,
reductions of 40–50% of the original system allocation goal are needed under RCP
8.5. Given the difficulty of implementing such reductions in the basin, any even-
tual adaptation process will require the strong involvement of stakeholders and the
compromising of current expectations.

We believe the approach followed in this study allows decision maker to easily un-
derstand climate change risks and impacts, and to identify the critical timing to propose
and implement adaptation measures affecting current operation rules, infrastructure, and
water allocation goals, especially in cases were implementing those changes are difficult
or timely to implement. Although this work does not explore adaptation alternatives,
their performance through time, as well as their prioritization, can also be assessed within
this framework. On the other hand, in a direct and relevant application, this work can
be extended nationwide, allowing the prioritization of resources where adaptation is or
will be needed sooner. Finally, future studies considering other downscaling methods and
different hydrological modeling approaches should be carried out to quantify their effects
on the reservoir’s performance assessment. Moreover, other dynamics in the basin and
the reservoirs’ system may be incorporated, such as land-uses changes and changes in the
reservoirs capacity and dead storages due to sedimentation [110,111].

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
441/13/1/64/s1, Figure S1: Projected inflow to the Cogotí reservoir under RCP 2.6 (a), 4.5 (b), 6.0
(c), and 8.5 (d). The 25th (dotted line), 50th (solid line), 75th (dashed line) of annual inflows to the
Cogotí reservoir are averaged over a 40-year moving window, with the horizontal axis being the last
year of the window; Figure S2: Projected inflow to the Recoleta reservoir under RCP 2.6 (a), 4.5 (b),
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6.0 (c), and 8.5 (d). The 25th (dotted line), 50th (solid line), 75th (dashed line) of annual inflows to
the Recoleta reservoir are averaged over a 40-year moving window, with the horizontal axis being
the last year of the window; Text S1: Bootstrapping Method; Figure S3: Time-based reliability under
RCP 2.6 (a), 4.5 (b), 6.0 (c), and 8.5 (d) for a 40-year moving window, with the horizontal axis being
the last year of the window. The thick dashed and dotted lines represent the reference historical
performance and 10% worse-than-the-reference value, respectively. The red lines are the same results
from Figure 5a,b, with the thin blue and yellow lines being the 10% and 90% of error, obtained with
the bootstrapping method explained in Text S1; Figure S4: Time-based reliability under RCP 2.6 (a),
4.5 (b), 6.0 (c), and 8.5 (d) for a 40-year moving window, with the horizontal axis being the last year
of the window. The thick dashed and dotted lines represent the reference historical performance and
10% worse-than-the-reference value, respectively. The red lines are the same results from Figure 5c,d,
with the thin blue and yellow lines being the 10% and 90% of error, obtained with the bootstrapping
method explained in Text S1; Figure S5: Resilience under RCP 2.6 (a), 4.5 (b), 6.0 (c), and 8.5 (d) for a
40-year moving window, with the horizontal axis being the last year of the window. The thick dashed
and dotted lines represent the reference historical performance and 10% worse-than-the-reference
value, respectively. The red lines are the same results from Figure 6a,b, with the thin blue and yellow
lines being the 10% and 90% of error, obtained with the bootstrapping method explained in Text S1;
Figure S6: Resilience under RCP 2.6 (a), 4.5 (b), 6.0 (c), and 8.5 (d) for a 40-year moving window, with
the horizontal axis being the last year of the window. The thick dashed and dotted lines represent
the reference historical performance and 10% worse-than-the-reference value, respectively. The red
lines are the same results from Figure 6c,d, with the thin blue and yellow lines being the 10% and
90% of error, obtained with the bootstrapping method explained in Text S1; Figure S7: Volume-based
reliability under RCP 2.6 (a), 4.5 (b), 6.0 (c), and 8.5 (d) for a 40-year moving window, with the
horizontal axis being the last year of the window. The thick dashed and dotted lines represent the
reference historical performance and 10% worse-than-the-reference value, respectively. The red lines
are the same results from Figure 7a,b, with the thin blue and yellow lines being the 10% and 90%
of error, obtained with the bootstrapping method explained in Text S1; Volume-based reliability
under RCP 2.6 (a), 4.5 (b), 6.0 (c), and 8.5 (d) for a 40-year moving window, with the horizontal
axis being the last year of the window. The thick dashed and dotted lines represent the reference
historical performance and 10% worse-than-the-reference value, respectively. The red lines are the
same results from Figure 7c,d, with the thin blue and yellow lines being the 10% and 90% of error,
obtained with the bootstrapping method explained in Text S1; Figure S9: Maximum vulnerability
under RCP 2.6 (a), 4.5 (b), 6.0 (c), and 8.5 (d) for a 40-year moving window, with the horizontal
axis being the last year of the window. The thick dashed and dotted lines represent the reference
historical performance and 10% worse-than-the-reference value, respectively. The red lines are the
same results from Figure 8a,b, with the thin blue and yellow lines being the 10% and 90% of error,
obtained with the bootstrapping method explained in Text S1; Figure S10: Maximum vulnerability
under RCP 2.6 (a), 4.5 (b), 6.0 (c), and 8.5 (d) for a 40-year moving window, with the horizontal
axis being the last year of the window. The thick dashed and dotted lines represent the reference
historical performance and 10% worse-than-the-reference value, respectively. The red lines are the
same results from Figure 8a,b, with the thin blue and yellow lines being the 10% and 90% of error,
obtained with the bootstrapping method explained in Text S1; Figure S11: Average vulnerability
under RCP 2.6 (a), 4.5 (b), 6.0 (c), and 8.5 (d) for a 40-year moving window, with the horizontal axis
being the last year of the window. The thick dashed and dotted lines represent the reference historical
performance and 10% worse-than-the-reference value, respectively. The red lines are the same results
from Figure 9a,b, with the thin blue and yellow lines being the 10% and 90% of error, obtained with
the bootstrapping method explained in Text S1; Figure S12: Average vulnerability under RCP 2.6 (a),
4.5 (b), 6.0 (c), and 8.5 (d) for a 40-year moving window, with the horizontal axis being the last year
of the window. The thick dashed and dotted lines represent the reference historical performance and
10% worse-than-the-reference value, respectively. The red lines are the same results from Figure 9c,d,
with the thin blue and yellow lines being the 10% and 90% of error, obtained with the bootstrapping
method explained in Text S1.
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Appendix A

Table A1. General Circulation Models (GCM) and RCP scenarios used in this study.

GCM Name Realization RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5

1 ACCESS1.0 r1i1p1 x x
2 BCC-CSM1.1 r1i1p1 x x x x
3 CanESM2 r1i1p1 x x x
4 CanESM2 r2i1p1 x x x
5 CanESM2 r3i1p1 x x x
6 CanESM2 r4i1p1 x x x
7 CanESM2 r5i1p1 x x x
8 CCSM4 r1i1p1 x x x x
9 CCSM4 r2i1p1 x x x x

10 CCSM4 r3i1p1 x x x x
11 CCSM4 r4i1p1 x x x x
12 CCSM4 r5i1p1 x x x x
13 CNRM-CM5 r10i1p1 x
14 CNRM-CM5 r1i1p1 x x
15 CNRM-CM5 r2i1p1 x
16 CNRM-CM5 r4i1p1 x
17 CNRM-CM5 r6i1p1 x
18 CSIRO-Mk3.6.0 r10i1p1 x x x x
19 CSIRO-Mk3.6.0 r1i1p1 x x x x
20 CSIRO-Mk3.6.0 r2i1p1 x x x x
21 CSIRO-Mk3.6.0 r3i1p1 x x x x
22 CSIRO-Mk3.6.0 r4i1p1 x x x x
23 CSIRO-Mk3.6.0 r5i1p1 x x x
24 CSIRO-Mk3.6.0 r6i1p1 x x x x
25 CSIRO-Mk3.6.0 r7i1p1 x x x x
26 CSIRO-Mk3.6.0 r8i1p1 x x x x
27 CSIRO-Mk3.6.0 r9i1p1 x x x x
28 FGOALS-g2 r1i1p1 x x x
29 GFDL-CM3 r1i1p1 x x x x
30 GFDL-ESM2G r1i1p1 x x x x
31 GFDL-ESM2M r1i1p1 x x x x
32 GISS-E2-R r1i1p1 x x x x
33 GISS-E2-R r2i1p1 x
34 GISS-E2-R r3i1p1 x
35 GISS-E2-R r4i1p1 x
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Table A1. Cont.

GCM Name Realization RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5

36 GISS-E2-R r5i1p1 x
37 INM-CM4 r1i1p1 x x
38 IPSL-CM5A-LR r1i1p1 x x x
39 IPSL-CM5A-LR r2i1p1 x x
40 IPSL-CM5A-LR r3i1p1 x x
41 IPSL-CM5A-MR r1i1p1 x x x
42 MIROC5 r1i1p1 x x x x
43 MIROC-ESM r1i1p1 x x x x
44 MIROC-ESM-CHEM r1i1p1 x x x x
45 MPI-ESM-LR r1i1p1 x x x
46 MPI-ESM-LR r2i1p1 x x x
47 MPI-ESM-LR r3i1p1 x x x
48 MRI-CGCM3 r1i1p1 x x x
49 NorESM1-M r1i1p1 x x x x
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