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Abstract: A new statistical model of spatial distribution of observed galaxies is described. Statistical
correlations are involved by means of Markov chain ensembles, whose parameters are extracted
from the observable power spectrum by adopting of the Uchaikin–Zolotarev ansatz. Markov chain
trajectories with the Lévy–Feldheim distributed step lengths form the set of nodes imitating the
positions of galaxy. The model plausibly reproduces the two-point correlation functions, cell-count
data and some other important properties. It can effectively be used in the post-processing of
astronomical data for cosmological studies.
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1. Introduction

One of the important aims of modern observational cosmology is the investigation of
the galaxy distribution in the universe. The distribution at all redhsifts depends both on
the initial conditions present in the early universe and the successive dynamical evolution
of galaxies through smooth accretion and merger events. The luminous part of this matter
appears to astronomers as a hierarchy of galaxies, clusters of galaxies, clusters of clusters
of galaxies, etc. At present, the results are observations of different samples, such as the
Lick Observatory Catalog, 2dF Galaxy Redshift Survey, 2dF100k Redshift Survey, Sloan
Digital Sky Survey and others. To operate with this data, it is necessary to present this
information in a form convenient for mathematical analysis. The most advanced schemes
(statistical models) of this kind are formulated in terms of random point distributions. In the
framework of this model, the position of each spatially unresolved galaxy is interpreted as
a point in three-dimensional space, and any data sample can be subjected to a standard
procedure to determine its properties. Despite the seeming simplicity of this test, even
the question on the homogeneity of the spatial galaxy distribution, being fundamentally
important for cosmology [1,2], has not yet reached a general consensus [2–4]. The situation
changed after Mandelbrot introduced the concept of the fractal into circulation [5], which
made it possible to speak of homogeneous inhomogeneity [6,7], preserving the basic
cosmological principle of the coordinate system origin equivalence [1], or more strictly,
replacing it by its weakened Mandelbrot’s version [5].

According to observations, the two point correlation function of galaxies has a power-
law form, ξ(r) = (r0/r)γ on scales from 0.01 to 10 Mpc with the slope γ = 1.77 and a
scale factor r0 = 5 Mpc [1]. For a long time it was assumed that r0 is a characteristic
measure of inhomogeneity, and beyond r0 = 15 Mpc, the distribution of galaxies becomes
homogeneous [2]. This means that

N(R) ∝ RD, D = 3− γ, (1)

for the ensembles number of galaxies inside a sphere of radius R centered at any galaxy
(the positive number D is called the fractal dimension). Such a relation naturally originates

Mathematics 2021, 9, 98. https://doi.org/10.3390/math9010098 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-0594-7610
https://doi.org/10.3390/math9010098
https://doi.org/10.3390/math9010098
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9010098
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/9/1/98?type=check_update&version=2


Mathematics 2021, 9, 98 2 of 17

from the model of self-similar hierarchical clustering [4]. Transition to the outer region
with Poissonian uniform distribution, where

N(R) ∝ R3,

violates the self-similarity. Such random point structures, fractal on small scales and
homogeneous on large ones, were suggested to be called mesofractals [8]. The presence of
a boundary region between the fractal and homogeneous parts of the mesofractal can play
a decisive role in establishing the horizon of a representative (fair) sample.

To investigate this problem in the frame of the basic cosmological principle, stating the
equality of all points in space when choosing the origin [1], Mandelbrot offered interpreting
the left hand side of Equation (1) as the expected number of Markov chain nodes with the
transition probability

Prob(l > r) =
{

(r0/r)α, r > r0,
1, r < r0, α > 0.

This law sufficiently reproducing inverse-power correlations observed in spatial
galaxy distribution, turned out to be rather awkward when computing multiple convolu-
tions [2]. For this reason, V. Uchaikin introduced Lévy–Feldheim distributed vectors [9,10],
more suitable for that aim. This model was analytically investigated, improved and nu-
merically tested [8,11]. The last question, which remained open, was the determination of
numerical parameters entering the transition probability in the Markov chain.

Here we discuss some methodological questions of this approach, relating to a new
(Uchaikin–Zolotarev) approximation of the galaxy power spectrum and involving the
Ornstein–Zernike equation in the problem under consideration.

The article is structured as follows. Section 2 introduces the basic statistical measures
of spatial point distributions—correlation function and power spectrum and correlation
function (Figures 1 and 2 correspondingly). Figure 1 discovers a noticeable difference be-
tween the theoretical Harrison-Zel’dovich power spectrum and experimental data, Figure 2
demonstrates the experimental evidence of transition from fractal regime to homogeneous
one on large scales. Section 3 provides a 4-parameter Uchaikin–Zolotarev approxima-
tion and a method for estimating its parameters from observational data. Table 1 and
Figures 3–8 demonstrate the high efficiency of this approximation. Section 4 presents the
solution to the Ornstein–Zernike equation in the form of a Neumann series, which serves
as a basis for Monte Carlo simulations. The first term of this series describes the statistical
properties of a fractal cluster that appears in the vicinity of a node. In two successive
Sections 5 and 6),the moments of the number of objects in the cluster and the probability
distributions reconstructed from them are demonstrated. The results are confirmed by
Monte Carlo simulations and are in agreement with three popular models (thermodynami-
cal, negative-binomial and lognormal). The probability distribution reveals the important
property of the self-similarity (scaling) with respect to the mean cell count number. The last
(7th) section summarizes conclusions.

2. Power Spectrum and Correlation Function

An important statistical measure of the large-scale structure of the Universe is the
two-point correlation function [2], which determines the joint probability

δProb = n̄2[1 + ξ(r)]δV1δV2

of finding two galaxies in disjoint infinitesimal volumes δV1 and δV2, placed at the distance
r = |x2 − x1|, and n̄ is a mean number of galaxies per unite volume. Instead of ξ(r), its
Fourier transformation P(k) called the power spectrum is often used (as is commonly
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accepted in cosmography, the Universe is assumed to be periodic in some large rectangular
parallelepiped of volume V; see for details [2], Sections 34 and 41).

P(k) = V−1
∫

ξ(r)eik·xd3x, (2)

ξ(r) = (V/8π3)
∫

P(k)e−ik·xd3k. (3)

where k is 3d vector in the Fourier-space (in units of “waves per box”; physical wavelengths
are A = 260h−1 Mpc/k).

There exist several approximations of power spectrum. The simplest of them is the
Harrison–Zel’dovich (HZ) spectrum

P(k) = Akn, n ∈ (−3, 0), k = |k|, (4)

is shown on Figure 1 as dashed line. Bounding the range of values of the parameter n from
below ensures the convergence of the integral over the spectrum at long waves, i.e., for
k→ 0 ([2], remark to formula (42.3)). The HZ spectrum describes the fluctuations generated
in the framework of the canonical inflationary scenario [12,13].

As one can see from Figure 1, and from the other ones shown further, this two-
parameter power function gives a rather rough representation of the spectrum. Moreover,
the mismatch between it and the measured spectra turns out to be different for different
data catalogs, and if it is necessary to use a general analytical approximation during
processing, it should be flexible enough and have more parameters that are sensitive
enough to changes in the input data. As shown by Peebles, the HZ spectrum yields the
large-distance asymptotics power-type

ξ(r) ∼ r−α,

with α = 3 + n. Although it is commonly accepted that α is close to 1.8, processing of
various catalogs reveals a significant scatter of this parameter (from 1.15 to 2.99, see column
D2 in Table 1 of the review [7]).

Figure 1. Power spectrum P(k) from the Lick Observatory catalog (dots with bars). The dashed
line represents HZ spectrum with n = −1.41 [14], the continuous one represents UZ spectrum with
A = 1000, α = 1.5, c = 0.02, q = 0.99.
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Figure 2 relates to the important area of distances around which there have been
lively disputes for several decades, in which Einstein also took part at one time (see [3,6]).
Currently, the shown behavior of the correlation function is interpreted as a transition from
the scale of the fractal arrangement of galaxies to the scale of their uniform (homogeneous)
distribution. V. Uchaikin suggested to use for such random point arrangements the term
mesofractals [8]. It should be emphasized that the mesofractal is a homogeneous (in the
statistical sense) structure, whose properties do not depend on the choice of the origin. It is
only required that it coincides with one of the material points (galaxies) of the given set.

Figure 2. The correlation functions 1 + ξ(r) for different samples calculated with different estima-
tors [7]. The dashed line relates to the homogeneous part of the mesofractal, whereas the dotted line
plots the fractal contribution.

The authors of review [7] listed some possible reasons for the observed deviation from
the power-type law: “(1) Inconsistency of the theoretical model with the real universe,
(2) misinterpretation of the observed events, (3) incorrectness of the mathematical pro-
cessing of data. The most important of the assumptions used in a number of processing
algorithms is the Poisson type of the spatial galaxy distribution. From a mathematical
point of view, the inhomogeneous Poisson distribution admits the independence of disjoint
regions, actually, we deal with only one object, which is the observable universe and we
cannot verify the independence of the observed regions. Therefore, we have no rights
to apply limit theorems of probability theory.” This motivates the further research in
this direction.

The appropriate spectrum for the mesofractal random point set has been proposed by
Uchaikin and Zolotarev in their book [10]. This UZ spectrum is represented in the form

P(k) = A(e(ck)α − q)−1 (5)



Mathematics 2021, 9, 98 5 of 17

where A, c > 0, 0 < α ≤ 2 and 0 ≤ q ≤ 1 are chosen in an appropriate way. To understand
the origin of this approximator, perform the inverse Fourier transform of (5) and obtain the
integral equation

ξ(r) = Ap(x/c)/c3 + (q/c3)
∫

ξ(|x− x′|)p(x′/c)d3x′ (6)

with the kernel
p(x) =

1
8π3

∫
e−ik·x−kα

d3k, (7)

being the Lévy–Feldheim isotropic density [10]. Formally, Equation (6) has been derived
for the killed Markov chain ensemble in [9,10], and q is the trajectory survival probability: if
q = 1, the trajectory contains infinite numbers of nodes, providing long-range correlations;
if q = 0, it consists of only one (the first) node and describes the short-scale correlations
(direct correlations, as they are called within molecular physics). When q = 1 and k ∼ 0 we
arrive at Mandelbrot’s model of unbounded continuous clustering hierarchy with spectrum

A(1 + (ck)α − 1 + ...)−1 ' A(ck)−α,

having the form of HZ spectrum.
To remedy the problems with equation solving, Peebles offered to lessen the spatial

gradients on scales 30 h−1Mpc to at least 300 h−1Mpc. A simple way to do this is to suppose
that there are many different random walks distributed uniformly at random through space
as in the Neyman–Scott program. Individual chains cannot be infinitely long, because
that would make the mean space density n̄ diverge; and Peebles suggests truncating these
trajectories with some deterministic number of steps. UZ model uses a random mechanism
of truncation including the survival probability, which led to OZ equation. Within the
molecular physics, it is known as the Ornstein–Zernike equation. A specific interpretation
the OZ formalism has been found in the cosmological large-structure problem [15]. It has
the form of the equation in [16], relating to statistical mechanics, and can be solved by the
Monte Carlo method.

The four parameters contained in the UZ approximator make it not only a flexible
tool for more fine tuning the model, but give a basis for statistical simulation of such
ensembles for investigation of reliability of various estimators effectiveness. It is useful to
keep in mind that parameters A and c relate to scaling characteristics of inhomogeneities,
whereas α and q determine the fractal dimension in fractal-like regions and the size of such
regions. Advantages of the UZ approximator over HZ can be seen in Figure 1 and look
more convincing in the case of statistically poorer catalogs (Figures 6–8).

3. Estimation of UZ Spectrum Parameters

Let us represent the power spectrum P in the form:

P(k; A, c, q, α) = A
e−(c k)α

1− q e−(c k)α = A p(k; c, q, α), (8)

where

p(k; c, q, α) =
e−(c k)α

1− q e−(c k)α . (9)

This property of linear proportionality of P and A will be used to optimize approxi-
mation to experimental data.
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Figure 3. The 2dFGRS (The 2dF Galaxy Redshift Survey) power spectrum from [6] (dots); the curve
is UZ approximation.

Figure 4. The 2dFGRS power spectrum from [6] convolved with the survey window function for a
fiducial linear theory model (dots); the curve is UZ approximation.

Let ki, i = 1, . . . , N, be the wave numbers used for the approximation, Pi be cor-
responding observational data at points P to be approximated and pi = p(ki, c, q, α) be
approximated values.

Φ(c, q, α) =
N

∑
i=1

(Pi − P(ki, A, c, q, α))2, (10)
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where Φ(c, q, α) is an error function, and (ki, Pi) are input data values pairs.
In fact, Φ does not depend on A. This is because of linearity of P with respect to A, as

we can see in (8). Rearranging terms of Φ we obtain

Φ(c, q, α) = A2 ∑
i

p2
i − 2 A ∑

i
Pi pi + ∑

i
P2

i , (11)

where pi = p(ki, c, q, α) and Pi, i = 1, . . . , N are observational data at points k1, . . . , kN
to be approximated. This is a parabolic function with indeterminate A. As ∑i(p2

i ) ≥ 0,
the parabola is U-shaped with vertex

A0 =
∑i Pi pi

∑i p2
i

. (12)

Thus,

Φ(c, q, α) = ∑
i

P2
i
(∑i Pi pi)

2

∑i p2
i

. (13)

Regressions were performed in MATLAB environment with function fminsearch. The nu-
merical values of the parameters and comparison of the corresponding UZ approximations
with the original experimental spectra are shown in Table 1 and Figures 1–8. All represented
cases demonstrate a good theoretical and agreement despite the very noticeable difference in
the initial spectra. This fact reveals a kind of flexibility of this approximation, which makes it
possible to distinguish the features of spectra close to each other. At the same time, the table
shows that “good” (smooth) theoretical data in a wide range of wavenumbers are repro-
duced with an error that rarely exceeds a few percent. The data presented in the table and
in the figures indicate that the UZ approximation has been successfully tested and may be
recommended as a working tool for the large scale structures processing.

Table 1. Uchaikin–Zolotarev spectrum approximation (5) applied to the data given in [6]. The columns
represent the spectrum convolved with the survey window function for a fiducial linear theory model,
δ = [PApprox − PInit]/PInit. A = 39.0935, c = 1.942899, q = 0.984104, α = 1.86527.

k PApprox PInit δ(%) k PApprox PInit δ(%)

0.010 2.36×104 2.21×104 6.8 0.090 7.07×103 6.92×103 2.2
0.014 2.29×104 2.33×104 −1.7 0.094 6.66×103 6.46×103 3.1
0.018 2.19×104 2.28×104 −3.9 0.099 6.19×103 6.07×103 2.0
0.022 2.09×104 2.18×104 −4.1 0.103 5.84×103 5.75×103 1.6
0.026 1.98×104 2.05×104 −3.4 0.107 5.53×103 5.48×103 0.9
0.030 1.87×104 1.90×104 −1.6 0.111 5.23×103 5.24×103 −0.2
0.034 1.76×104 1.75×104 0.6 0.115 4.96×103 5.03×103 −1.4
0.038 1.65×104 1.62×104 1.8 0.119 4.70×103 4.82×103 −2.5
0.042 1.55×104 1.50×104 3.3 0.123 4.46×103 4.61×103 −3.2
0.046 1.45×104 1.40×104 3.6 0.127 4.24×103 4.39×103 −3.4
0.050 1.35×104 1.32×104 2.3 0.131 4.03×103 4.18×103 −3.6
0.054 1.26×104 1.24×104 1.6 0.135 3.84×103 3.97×103 −3.3
0.058 1.18×104 1.17×104 0.8 0.139 3.66×103 3.77×103 −2.9
0.062 1.10×104 1.11×104 −0.9 0.143 3.49×103 3.58×103 −2.5
0.066 1.03×104 1.05×104 −1.9 0.147 3.33×103 3.40×103 −2.1
0.070 9.68×103 9.85×103 −1.7 0.151 3.18×103 3.25×103 −2.1
0.074 9.07×103 9.21×103 −1.5 0.155 3.04×103 3.11×103 −2.2
0.078 8.51×103 8.57×103 −0.7 0.169 2.62×103 2.73×103 −4.0
0.082 7.99×103 7.97×103 0.2 0.185 2.22×103 2.36×103 −5.9
0.086 7.51×103 7.43×103 1.1
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Figure 5. 2dFGRS spectrum [17] (blue symbols) and its UZ approximation (dashed line) with
A = 586.21, c = 1.22808, q = 0.99, α = 1.53515.

Figure 6. 2dFGRS spectrum [18] (red symbols) and its UZ approximation (dashed line) with A =

35.9332, c = 0.882462, q = 0.999, α = 2.58324.
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Figure 7. 2dFGRS spectrum [19] (orange symbols) and its UZ approximation (dashed line) with
A = 52.3655, c = 0.39625, q = 0.999, α = 1.72216.

Figure 8. 2dFGRS spectrum [19] (green symbols) and its UZ approximations. Dashed line is approxi-
mation with A = 821.639, c = 0.668853, q = 0.998058, α = 1; Dash-dotted line is approximation with
A = 996.431, c = 1.77611, q = 0.99, α = 1.4183. Observe the influence of parameter α.

4. The OZ-Equation Solving

As follows from Equations (6) and (7),

ξ(r) = (A/c3)g(x), r = c|x|.

where g(x) obeys the equation

g(x) = p(x) + q
∫

g(x− x′)p(x′)d3x′. (14)
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The positive function g(x) can be interpreted as the average density (concentration) of
the number of nodes of the Markov chain with transition probability p(x)d3x and survival
probability q, modeling the positions of galaxies.

The integral ∫
g(x)d3x = 1/(1− q), q < 1, (15)

gives the mean number of all nodes of the particle trajectory including the final one.
The function g(x) itself can be expressed by its Neumann’s series expansion

g(x) =
∞

∑
j=1

qj−1 pj(x), (16)

where
p1(x) ≡ p(x) (17)

and
pj+1(x) =

∫
pj(x− x′)p(x′)d3x′

is the multiple convolution of the distribution density p(x). Two algorithms of Monte
Carlo simulation of random vector with probability density (7) are described in [10,20].
The specific properties of the Lévy–Feldheim convolutions [10] represent (16) as

g(x) =
∞

∑
j=1

qj−1 j−3/α p1(j−1/αx).

For α = 1 and α = 2, isotropic LF densities are expressed through elementary functions
of r = |x|:

p1(x) =
1

π2(1 + r2)2 , α = 1 (3d-Cauchy-distribution)

and
p1(x) =

1
(4π)3/2 e−r2/4, α = 2 (3d-Gauss-distribution).

Under condition (15), the series (16) converges and the problem can be solved by
Monte Carlo method.

5. Cell Counts: Moments and Probabilities

As claimed in [21], in order to satisfy the main cosmological principle (in its weakened
form), one should simulate trajectories by pairs. Marking results relating to paired trajec-
tories by open circles, and to single ones by filled circles, we represent the k-th factorial

moment of the random cell count
◦
N (R) as

〈
◦
N

[n]
(R)〉 =

n

∑
k=0

(
n
k

)
〈
•
N

[k]
(R)〉〈

•
N

[n−k]
(R)〉,

where

〈
•
N

[k]
(R)〉 = k!

∫
UR

dx1 . . .
∫

UR

dxkg(x→ x1) . . . g(xk+1 → xk)

Taking into account that the difference between factorial and central moments de-
creases, as the latter increase, one can take for asymptotically large R

〈
•
N

k
(R)〉 ∼ k!(4π|C(−α)|/3)kRαkKk(α).



Mathematics 2021, 9, 98 11 of 17

Here
K0(α) = 1, K1(α) = (3/4π)

∫
U1

r−3+αdx,

Kk(α) = (3/4π)k
∫

. . .
∫

Uk
1

(r01 . . . rk−1,k)
−3+αdx1dx2 . . . dxk, k > 1, (18)

rij = |xi − xj|

and U1 is the sphere of the radius R = 1 centered at the origin of coordinates.

The moments of the normalized cell count Y =
•
N (R)/〈

•
N (R)〉 (for a single trajectory)

and Z =
◦
N (R)/〈

◦
N (R)〉 (for a paired trajectory) do not depend on R as R → ∞. As a

result, the asymptotical probability distribution of
◦
N (R) can be written in the scaling form:

Prob{Z = n/〈
◦
N (R)〉} ∼ 1

〈
◦
N (R)〉

Ψα

(
n

〈
◦
N (R)〉

)
, R→ ∞.

Here Ψα(z) is the density of the distribution of variable Z having the moments:

〈Zn〉 =
∞∫

0

znΨα(z)dz, 〈Z〉 = 1,

determined via the coefficients Kn presented in Table 2. To estimate their accuracy, we put
in brackets five Peebles’ values ([2] Section 59). Asterisk mark his data for α = 1.23.

Table 2. The coefficients (18) for a single trajectory. The values in brackets were taken from [2] (values
with asterisk are for α = 1.23).

Kn
α

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

K1 12.0 6.00 4.00 3.00 2.40 2.00 1.71 1.50
K2 140 34.0 14.6 7.80 4.88 3.31 2.42 1.88

(34.0) (7.82) (5.02) * (3.31) (1.88)
K3 163 × 10 185 50.4 19.1 9.38 5.22 3.30 2.29

(9.5) *
K4 188× 102 985 168 45.8 17.7 8.13 4.46 2.78
K5 215× 103 516 ×10 554 108 33.2 12.6 6.03 3.38

There exists a whole theory of recovery of a function from its moments, but fortunately,
we meet a very simple case. Table 2 prompts us to check the relation

〈Zn〉 = (A(α)n + B(α))〈Zn−1〉.

This relation is a characteristic property for gamma distribution

Ψα(z) =
1

Γ(λ)
λλzλ−1e−λz. (19)

Actually, multiplying Equation (19) by zndz and integrating the result over the positive
semiaxis yields

〈Zn〉 =
(

n
λ
+ 1− 1

λ

)
〈Zn−1〉.
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The parameter of gamma distribution λ can be expressed in terms of the variance of Z:

λ(α) =
1

〈Z2〉 − 1
=

1
σ2

Z
.

This is a remarkable fact, not only providing a tool convenient for practically dealing
with the cell-count fluctuations, but linking the phenomenological mesofractal model with
such theoretical ones as thermodynamical, negative-binomial and lognormal ones [22].

There was also performed a Monte Carlo simulation of random trajectories with
transition probabilities for α = 0.5, 1.0, 1.5. The point number count has been gathered
inside the sphere of radius R� a. The trajectory is broken when coming out the boundary
of the sphere of the radius Rmax = 1� R. As a result of simulation, the function Ψα(z) and
its moments 〈Z〉, . . . , 〈Z5〉 for α = 0.5, 1.0, 1.5 have been obtained. Figure 9 demonstrate
results of the simulation for R = 0.05, 0.1 and 0.2, α = 1.0. All the histograms are satisfactory
described by the gamma distribution.

Figure 9. Demonstration of the scaling of the probability density function Ψα(z) for α = 0.5 (a), 1.0
(b) and 1.5 (c). Full lines show gamma approximation histograms marking results of Monte Carlo
simulations for three different values of R (0.05, 0.1 and 0.2).
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Let emphasize that when dealing with a uniform Poissonian ensemble, we may center
the count sphere at an arbitrary point of space, whereas in the fractal case, the center of the
sphere must be chosen at a material point, i.e., at a galaxy (see [3–5]). The fluctuations of
point number count inside the sphere (centered around any galaxy) do not vanish with
increasing the radius but remain an essential value up to some distance where the transition
domain begins.

6. Separation of Cluster and Background

At the end of this article, we return to the question concerning the fair–sample hy-
pothesis. In particular, we discuss, whether a given catalog (or a part of it) is in a position
to serve as a fair sample of galaxy statistics or not. Without making a final verdict, the fol-
lowing cautious considerations can be made on the basis of the model under consideration.
It is easy to make sure that on large scales both conditional and unconditional statistics
coincide and

◦
ξ (x1, ..., xk) = ξk(x1, ..., xk)

s
= 21−kk!ξ(r12)...ξ(rk−1, k).

Because the two-point function ξ depends only on the distance r between the two
points, it doesn’t matter where we put the origin of coordinate system. Therefore

〈
◦
N

[k]
(R)〉 = 〈N[k](R)〉 =

∫
V(R)

dx1...
∫

V(R)

dxk fk(x1, ..., xk),

and for simple (nonfactorial) moments of small orders we have:

〈N2(R)〉 = nV + (nV)2 + (nV)2 A2(r0/R)γ (20)

and
〈N3(R)〉 = nV + 3(nV)2 + (nV)3 + 3(nV + 1)(nV)3 A3(r0/R)2γ, (21)

where Ak = 21−kk!.
Remind that the last (fractal) terms of the moments (20) and (21), related in our

interpretation to clusters, were calculated by Peebles [2] and represented in the form
(formulas (60.7) and (60.13) of the cited book)

〈N2(R)〉 = (nV)2 A′2(r0/R)γ

and
〈N3(R)〉 = (nV)3 A′3(r0/R)2γ.

Factors A′k were obtained from observation data and from some simple model offered
by Peebles (we will denote them by A′′k). The numerical results are presented in Table 3.

Peebles noticed that his results are bounded by the condition R ≤ r0 because the vari-
ance

VarN(R) = 〈N2(R)〉 − 〈N(R)〉2 = (nV)2[A2(r0/R)γ − 1]

must be positive. At the same time, his formula (60.3) coincides with our formula (20) and
both they yield the variance

VarN(R) = (nV)2[A2(r0/R)γ + (nV)−1]

being free from the defect. When R→ ∞

VarN(R) ∼ nV = 〈N(R)〉

and
〈N3(R)〉 ∼ 〈N(R)〉+ 3〈N(R)〉2 + 〈N(R)〉3.
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The two formulas are indication of the Poisson law. Consequently, there are reasons to
suppose the galaxy distribution to be uniform at very large scales in accordance with the
fair sample hypothesis, assuming uniformity of the Universe as a whole.

Table 3. The moments 〈Zn〉 for a paired trajectory. The lower values are results of Monte Carlo
simulations.

〈Zn〉
α

0.25 0.50 0.75 1.00 1.25 1.50 1.75

〈Z2〉 1.49 1.44 1.41 1.37 1.35 1.33 1.33
1.51 ± 0.07 1.40 ± 0.06 1.36 ± 0.06

〈Z3〉 2.93 2.70 2.55 2.36 2.29 2.22 2.22
3.04 ± 0.25 2.52 ± 0.21 2.38 ± 0.21

〈Z4〉 7.18 6.18 5.59 4.95 4.71 4.51 4.54
7.5 ± 1.0 5.7 ± 0.8 5.3 ± 0.9

〈Z5〉 21.0 16.7 14.4 12.2 11.4 10.8 11.0
22 ± 4 16 ± 3 15 ± 5

We end our article with demonstration of an artificial domain in the Universe, obtained
by means of the trajectory ensemble with initially nods distributed according to uniform
3d Poisson process (Figure 10). Let us give a short explanation of how the image in
Figure 10 appeared. Each point, representing a possible position of a galaxy (because
its coordinate are random numbers, generated by computer, we call it artificial). For the
sake of convenience, we picture points by means of open circles. when the dots condense,
the circles overlap each other, darkened, or even completely black areas appear: these
are clusters. Lévy–Feldheim distributions, have long power-law tails, and the remaining
probability is concentrated in the region of small argument values. Observing the process
of such wanderings on a large scale, we see how a wandering particle “tramples” for a
long time in the vicinity of the starting point (generating an artificial galaxy with each
hop) until a “long” run occurs, and the particle producing “galaxies” flights away from
this places to create another cluster. We see such clusters in the figure. It remains only to
add that the initial positions of the points are characterized by a uniform (in a statistical
sense) distribution, there are no clusters, but descendants of these particles begin to appear,
then particles of the next generation from them, and all this is superimposed on each
other, reproducing the very hypothetical hierarchy of de Vaucouleur, and the result is a
mesofractal: if you look closely, we will see clusters of different sizes, chaotically scattered
over an almost uniform field of single particles depictured by filled circles. Nearby we
placed the observed image (Figure 11) of one of clusters, taken from [7]. A comparison
of these two pictures confirms our assumption that the set of point objects constructed
by this method has a cluster character, explained by the peculiarity of the Lévy–Feldheim
process [10].
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Figure 10. 2d projections of a domain with 700 artificial objects, simulated by means of the Monte
Carlo method with α = 3/2.

Figure 11. The cluster of galaxies Abell 1689 at redshift z = 0.18 seen by the HST with its recently
installed Advanced Camera for Surveys (ACS) [7].
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7. Conclusions

The aim of this work was to modify the Mandelbrot fractal model of point-like objects
in 3d Euclidean space possessing properties similar to observed ones in the large scale
galaxy distributions. In Mandelbrot’s model, the entire set of random points correlated
according to the same (power) law as galaxies was generated by the nodes of a single
random trajectory of an infinite Markov chain. The distances between successive nodes
are distributed according to a power law, consistent with the characteristic of decreasing
correlations in the observed samples. As the viewing radius increased, the statistics near the
border worsened, and the question of what to expect beyond this statistical limit remained
open. The present approach is based on a modification of this model: not a single infinite
trajectory is considered, but a family of independent trajectories of a terminated Markov
chain are, the initial nodes of which are distributed according to a uniform Poisson law
in Euclidean space, and the distribution of distances between successive nodes of each of
the trajectories corresponds to a 3d-stable isotropic Lévy–Feldheim law. The approach is
based on a 4-parameter approximation of the experimentally observed spectrum, which
has undergone extensive testing on data from several catalogs. A statistical analysis of
the scheme built on these principles showed that the resulting arrangement of random
point objects exhibits fractal properties on small scales, described in detail in the works of
Mandelbrot, Peebles and Pietronero (see the list of references), and outside this area it con-
tinuously transforms into a uniform Poisson-type spatial distribution. The determination
of the parameter values from the data on the power spectrum in the distribution of galaxies
makes it possible to estimate the radius of such a sphere, beyond which the statistical
distributions of galaxies can be considered mutually independent and the corresponding
data can be used as a fair sample [2].
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