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Abstract: An inverse scattering problem of time-harmonic chiral electromagnetic waves for a buried
partially coated object was studied. The buried object was embedded in a piecewise isotropic
homogeneous background chiral material. On the boundary of the scattering object, the total
electromagnetic field satisfied perfect conductor and impedance boundary conditions. A modified
linear sampling method, which originated from the chiral reciprocity gap functional, was employed
for reconstruction of the shape of the buried object without requiring any a priori knowledge of the
material properties of the scattering object. Furthermore, a characterization of the impedance of the
object’s surface was determined.
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1. Introduction

In this work, the inverse electromagnetic scattering problem of determining the surface
impedance and the shape of a buried partially coated scattering object in chiral media is
studied. In order to do this, we need information of the value of the electric and magnetic
fields on the surface of the earth.

A chiral material is one that displays optical activity such that, when the plane of vibra-
tion of a linearly polarized light passes through an opticaly active medium is rotated. Over
the last few years, chiral materials have been studied more intensely and there are more
studies on the subject, covering both their applications and their theoretical background.
Furthermore, various papers have been written on direct and inverse electromagnetic scat-
tering problems for chiral media. Indicatively, we refer to Reference [1–4]. These materials
are characterized by a set of two constitutive equations, in which electric and magnetic
fields are connected via a physical variable or constant, known as chirality.

In this work, Drude-Born-Fedorov constitutive equations are used, as they are symmet-
ric under time reversality and duality transformation [5]. In homogeneous and isotropic
chiral media, the electric and magnetic fields are a combination of Left Circularly Polarized
and Right Circularly Polarized components that have different phase speeds. So, in the
applications, we can use the Bohren decomposition [6] of electric and magnetic fields into
suitable Left and Right Circularly Beltrami fields. Such fields have been employed in
Reference [2] for the definition of the chiral Herglotz wave functions and in Reference [6]
for formulation of the electric dipole, which both play an important role in the present
work. In Reference [7], the measure of chirality for a certain class of chiral scatterers has
been calculated, while, in Reference [8], properties of chiral metamaterials are described.
In addition, we note that Ammari and Nédélec in Reference [1] have proved that the well-
known Silver-Müller radiation condition remains valid in chiral media. In Reference [4,9],
the direct and the inverse electromagnetic scattering problems by a mixed impedance
screen in a chiral environment are investigated, respectively. Beltrami fields have been
used for the uniqueness and a variational method for the existence of the direct problem.
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In the inverse problem, a modified linear sampling method, originated from a factorization
of the chiral far field operator, has been employed.

In this work, the inverse scattering problem of specifying the shape and the sur-
face impedance of a buried coated scattering object in a chiral environment is studied.
A qualitative method [10], which is based on the chiral reciprocity gap operator, is used
in Reference [11]. In fact, this procedure is a modified type of the linear sampling method
(LSM). The classical LSM, which was first established by Colton and Kirsch [12], is simple,
relatively quick and does not need any a priori information of the material parameters
of the scattering object. However, in the electromagnetic imaging of a buried object via
LSM, the computation of the Green’s function of the background material is necessary.
Sometimes, this computation is practically impossible. The reciprocity gap functional
method helps us to overcome this difficulty. The combination of the LSM and the reci-
procity gap functional method was established by Colton and Haddar in Reference [13] for
acoustic waves and by Cakoni, Fares, and Haddar in Reference [14] for electromagnetic
waves. In Reference [15], a reciprocity gap functional for elastic waves has been used for
solving an inverse mixed impedance scattering problem. In Reference [11], a reciprocity
gap functional for chiral media has been defined, in order for an inverse scattering problem
for a perfect conductor to be solved.

The present paper extends this method to study inverse scattering problems for buried
partially coated objects in a chiral environment. In Reference [16], the shape and the surface
impedance of a buried coated scattering object have been determined. In Reference [17], the
same method has been applied to solve an electromagnetic inverse scattering problem for a
partially coated anisotropic dielectric, which is in the inner of the earth. Using this method
in Reference [18], an inverse electromagnetic scattering problem for a perfectly conducting
cavity, using measurements from the interior, has been solved. In Reference [19], an interior
inverse acoustic scattering problem for a cavity with an inhomogeneous medium inside has
been studied. The same method has been employed in Reference [20] in order for a sound
field to be reconstructed in a spherical harmonic domain. In Reference [21], the reciprocity
gap functional method is applied to calculate the boundary and the permittivity of the
scattering object in radar imaging. Recently, the reciprocity gap functional method has been
employed in order to study an inverse scattering problem in electrical tomography [22], in
seismology [23] and in source identification [24]. For more details on the linear sampling
and reciprocity gap functional method, we refer to Reference [12], while, for general aspect
in scattering theory, we refer to Reference [25,26].

In Section 2 of this paper, the electromagnetic waves in chiral media are described
and the chiral mixed impedance scattering problem is formulated. In Section 3, the chiral
reciprocity gap operator is defined, proved that it is injective and it has a dense range.
In Section 4, the main result of the paper is proved. In Section 5, the surface impedance is
determined. Finally, a conclusion is given in Section 6.

2. Electromagnetic Waves in Chiral Media

We consider the scattering of a time-harmonic electromagnetic wave by an object em-
bedded in a chiral medium. The Drude-Born-Fedorov constitutive relations [6] are employed:

D = ε(E + β∇× E) , B = µ(H+ β∇×H) ,

where E , H are the electric and magnetic fields, D the electric displacement, B the mag-
netic induction, β is the chirality measure, ε the electric permittivity, and µ the magnetic
permeability. Then, applying the source-free Maxwell curl postulates:

∇× E − iωB = 0 , ∇×H+ iωD = 0 ,

where ω is the angular frequency, we get the following relations:
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∇× E = βγ2E + iωµ
(γ

k

)2
H , (1)

∇×H = βγ2H− iωε
(γ

k

)2
E , (2)

where k2 = ω2εµ and γ2 = k2(1− β2k2)−1. We point out that k is not a wave number and
does not have any particular physical significance. We assume that the physical parameters
β, ε, µ are positive constants and kβ < 1, (Reference [6] (p. 87)). The fields E andH satisfy:

∇ · E = ∇ ·H = 0 .

We eliminate the magnetic fieldH in Equations (1) and (2) and obtain

∇×∇× E − 2βγ2∇× E − γ2E = 0 . (3)

In isotropic homogeneous chiral media, the electric and magnetic fields are composed
of Left Circularly Polarized (LCP) and Right Circularly Polarized (RCP) waves with differ-
ent phase speeds. So, for E andH, we make use of the Bohren decomposition into Beltrami
fields QL and QR [5], and we get

E = QL + QR , H = −i
√

ε

µ
(QL −QR)

and hence

QL =
1
2
(E + i

√
µ

ε
H) , QR =

1
2
(E − i

√
µ

ε
H) .

The Beltrami fields satisfy the differential equations:

∇×QL = γLQL , ∇×QR = −γRQR ,

which show that the homogeneous isotropic chiral media are circularly birefringent.
The wave numbers γL and γR for the LCP and RCP Beltrami fields, respectively, are
given by:

γL = k(1− kβ)−1 , γR = k(1 + kβ)−1

and satisfy:

γL + γR =
2γ2

k
, γL − γR = 2βγ2 , γLγR = γ2 .

For further information on the physical background for chiral media, we refer to Refer-
ence [5,6,27].

We assume that a scatterer D with C2-boundary, Γ = ∂D is embedded in a piecewise
isotropic homogeneous chiral material with R3\D to be connected. It is assumed that Γ
is divided into two open sets ΓD and ΓI , such that ΓD ∩ ΓI = ∅ and ΓD ∪ ΓI = Γ. On ΓD
(Dirichlet part), a perfectly conducting boundary condition is satisfied and ΓI (impedance
part) is covered from a very thin dielectric layer. We consider Ω to be a bounded domain,
which contains D, with C2- boundary ∂Ω. Let βb, εb and µb be the chirality, the electric
permittivity, and the magnetic permeability, respectively, that characterize the medium
Ω\D, which will be referred to as the background medium. In addition, let β0, ε0 and µ0
be the corresponding parameters in the exterior R3\Ω of Ω. We suppose that the physical
parameters are positive constants. Finally, ν denotes the outward normal unit vector on the
corresponding surface.
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The incident field is a chiral electric dipole with polarization p ∈ R3 located at x0 in a
chiral environment. We assume that x0 lies on an auxiliary close surface Λ contained in
R3\Ω. The electric incident field in a chiral medium is given by the formula [5,6]:

Ex0(x, p, γ0) =
k0

2γ2
0

p ·
{(

γ0L Ĩ +
1

γ0L
∇∇+∇× Ĩ

)
eiγ0L |x−x0|

4π|x− x0|

+

(
γ0R Ĩ +

1
γ0R
∇∇−∇× Ĩ

)
eiγ0R |x−x0|

4π|x− x0|

}
,

where Ĩ is the identity dyadic in R3, and γ0L, γ0R are the wave numbers for the LCP and
RCP Beltrami fields, respectively, in R3\Ω with

γ0L = k0(1− k0β0)
−1 , γ0R = k0(1 + k0β0)

−1 ,

where γ2
0 = γ0Lγ0R, k2

0 ≡ k2 = ω2ε0µ0.
The incident on the scatterer D electric wave Ei has the form:

Ei(x) ≡ Ei
x0
(x, p) = Ex0(x, p, γ0) + Es,b

x0
(x, p) , (4)

where Es,b
x0 (x, p) is the scattered field due to the background material. In addition, the wave

Ei in Ω\D is given by:
Ei(x) ≡ Ei

x0
(x, p) = p · B̃(x, x0) , (5)

where B̃(x, x0) is the dyadic Green’s function of the chiral background material.
If η(x) = ηb = (εbµb)(ε0µ0)

−1 for x ∈ Ω\D, η(x) = 1 for x ∈ R3\Ω, β(x) = βb for
x ∈ Ω\D and β(x) = β0 for x ∈ R3\Ω, then B̃(x, x0) satisfies the equation:(

k−2 − η(x)β2(x)
)
∇×∇× B̃(x, x0)− 2β(x)η(x)∇× B̃(x, x0)− η(x)B̃(x, x0) = Ĩδ(x− x0) ,

with respect to x. Let Ei be the incident on D electric field and Es ≡ Es,D
x0 (·, p) be the

corresponding scattered field. Then, the total electric field E is given by E = Ei + Es and is
the solution of the mixed impedance scattering problem:(

k−2 − η(x)β2(x)
)
∇×∇× E− 2β(x)η(x)∇× E− η(x)E = 0 in R3 \ (D ∪ {x0}) , (6)

ν× E = 0 on ΓD , (7)

ν×∇× E− i
γ2

bλ

kb
(ν× E)× ν− βbγ2

bν× E = 0 on ΓI , (8)

x̂×∇× Es − β0γ2
0 x̂× Es + i

γ2
0

k0
Es = o

(
1
|x|

)
, |x| → ∞ (9)

uniformly in all directions x̂ =
x
|x| ∈ S2 ,

where S2 is the unit sphere in R3, kb = ω
√

εbµb , γ2
b = γbL γbR , with γbL = kb(1− kbγb)

−1

and γbR = kb(1 + kbγb)
−1.

The direct scattering problem can be studied as in Reference [9]. The uniqueness of
solution has been proved via the Beltrami fields, while, for the existence of solution, the
variational method has been employed, using a Calderon type operator [28] for chiral
media. The corresponding inverse scattering problem is the determination of the unknown
boundary of D and the evaluation of surface impedance λ from the information of the
tangential components ν × E and ν × H on the boundary ∂Ω for all points x0 ∈ Λ. In
chiral media, a Stratton-Chu type exterior integral representation for a radiating solution
of Equation (3) is the following:
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Es(r) = −2βγ2
∫

S
B̃(r, r′) ·

[
ν× Es(r′)

]
ds(r′)

+
∫

S

{
B̃(r, r′) ·

[
ν×∇× Es(r′)

]
+
[
∇r × B̃(r, r′)

]
·
[
ν× Es(r′)

]}
ds(r′) . (10)

We define the function spaces:

H(curl, D) =
{

u ∈
(

L2(D)
)3 : ∇× u ∈

(
L2(D)

)3
}

,

H0(curl, BR) =
{

u ∈ H(curl, BR) : ν× u |∂BR= 0
}

,

where BR is a ball of radius R containing D, as well as

H(Ω) =
{

u ∈ H(curl, Ω) : ∇×∇× u− 2βbγ2
b∇× u− γ2

bu = 0
}

,

L2
t (∂D) =

{
u ∈

(
L2(∂D)

)3 : ν · u = 0 on ∂D
}

,

L2
t (ΓI) =

{
u |ΓI : u ∈ L2

t (∂D)
}

,

X(D, ΓI) =
{

u ∈ H(curl, D) : ν× u |ΓI ∈ L2
t (ΓI)

}
.

The space X(D, ΓI) is equipped with the norm

||u||2X(D,ΓI)
= ||u||2H(curl,D) + ||ν× u||2L2

t (ΓI)
.

For the trace ν× u of u ∈ H(curl, D), we have

H−
1
2

div (∂D) =

{
u ∈

(
H−

1
2 (∂D)

)3
: ν · u = 0 , div∂Du ∈ H−

1
2 (∂D)

}
,

and for (ν× u)× ν of u ∈ H(curl, D)

H−
1
2

curl(∂D) =

{
u ∈

(
H−

1
2 (∂D)

)3
: ν · u = 0 , curl∂Du ∈ H−

1
2 (∂D)

}
.

The trace space of X(D, ΓI) on ΓD is defined by:

Y(ΓD) =

{
h ∈

(
H−

1
2 (ΓD)

)3
: ∃u ∈ H0(curl, BR), ν× u |ΓI∈ L2

t (ΓI), h = ν× u |ΓD

}
.

Finally, for the exterior domain R3\D, we define the spaces Hloc(curl,R3\D) and
Hloc(R3\D, ΓI) considering the domain (R3\D)

⋂
BR.

The exterior mixed impedance boundary value problem in chiral media is the follow-
ing problem: Let f ∈ Y(ΓD) and h ∈ L2

t (ΓI), find E ∈ X(D, ΓI) such that:(
k−2 − η(x)β2(x)

)
∇×∇× E− 2β(x)η(x)∇× E− η(x)E = 0 in R3 \ D , (11)

ν× E = f on ΓD , (12)

ν×∇× E− i
γ2

bλ

kb
(ν× E)× ν− βbγ2

bν× E = h on ΓI , (13)

x̂×∇× E− β0γ2
0 x̂× E + i

γ2
0

k0
E = o

(
1
|x|

)
, |x| → ∞ (14)

uniformly in all directions x̂ =
x
|x| ∈ S2 ,

If f = −ν × Ei and h = −ν × ∇ × Ei + i
γ2

bλ

kb
(ν × Ei) × ν + βbγ2

bν × Ei, then the

problem (11)–(14) is the mixed impedance scattering problem (6)–(9).
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Let z ∈ D and Ez ∈ H(curl, D). We consider the following chiral interior mixed
impedance boundary value problem corresponding to (6)–(9); given f ∈ Y(ΓD) and
h ∈ L2

t (ΓI), we find Ez ∈ X(D, ΓI) such that:

∇×∇× Ez − 2βbγ2
b∇× Ez − γ2

b Ez = 0 in D , (15)

ν× Ez = f on ΓD , (16)

ν×∇× Ez − i
γ2

bλ

kb
(ν× Ez)× ν + βbγ2

bν× Ez = h on ΓI . (17)

The values of parameter k for which the corresponding homogeneous interior mixed
impedance scattering problem admits a nontrivial solution will be referred to as chi-
ral Maxwell eigenvalues for D. This problem in the achiral case has been solved in
Reference [29]. A similar scattering problem for a mixed impedance screen has been stud-
ied in Reference [9]. In particular, a Calderon type operator for chiral media and a vari-
ational method have been employed to prove uniqueness and existence of solution. The
present scattering problem is to find the shape of D and the surface impedance λ from the
knowledge of electric and magnetic fields on ∂Ω. In what follows, a brief description of the
solvability of the interior mixed impedance problem (15)–(17) is given.

For the uniqueness of (15)–(17), we consider the corresponding homogeneous problem
( f = h = 0), and we multiply (15) with E (complex conjugate of E) and integrate over D.
Taking into account the boundary conditions we get

∫
D

[
|∇ × E|2 − γ2

b |E|
2 − 2βbγ2

b Re(E · ∇ × E)
]
dv + i

γ2
bλ

kb

∫
ΓI

|ET |2ds = 0, (18)

where ET = (ν× E)× ν is the tangential component of E. From (18), taking the imaginary
part and using the unique continuation principle as in Reference [12,29], we conclude that
E = 0 in D. For the existence, we consider the variational formulation for the problem
(15)–(17). For all test functions φ ∈ X̃ with

X̃ =
{

u ∈ H(curl, D) : ν× u|ΓD = 0, ν× u|ΓI ∈ L2
t (ΓI)

}
,

we have∫
D

[
∇× E · ∇ × φ− γ2E · φ− 2βγ2Re

(
φ · ∇ × E

)]
dv +

iγ2λ

k

∫
ΓI

ET · φT ds

= −
∫

ΓI

h · φT ds . (19)

We look for solution E of the form E = W +U, where U ∈ X(D, ΓI) with ν×U|ΓD = f ,
which there exists from the definition of Y(ΓD). Substituting in (19), we take:

a(W, φ) = 〈h, φ〉 − a(U, φ), (20)

where

a(u, ψ) = (∇× u,∇× ψ)− γ2(u, φ)− 2βγ2Re(∇× u, φ) +
iγ2λ

k
〈uT , ψT〉 . (21)

In (21), (·, ·) denotes the L2(D) scalar product and 〈·, ·〉 the L2
t (ΓI) product. Equation (20)

has been studied in Reference [28,29] for the achiral case. With a similar process for the chiral
case, the following theorem is proved.

Theorem 1. If ΓI 6= ∅ then the chiral interior partially coated problem (15)–(17) has a unique solution.
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3. The Chiral Reciprocity Gap Operator

The reciprocity gap operator for electromagnetic scattering in chiral media has been
defined in Reference [11], in order to study an inverse scattering problem for a perfectly
conducting obstacle.

Let E = Ex0(·, p) be the solution of the scattering problem (6)–(9). The chiral reciprocity
gap functional is defined by

R(E, W) =
∫

∂Ω
[(ν× E) · ∇ ×W − (ν×W) · ∇ × E]ds− 2βbγ2

b

∫
∂Ω

[(ν× E) ·W]ds , (22)

where W ∈ H(curl, Ω) and the integrals are interpreted in the sense of the duality between

H−
1
2

div (∂D), H−
1
2

curl(∂D). In particular, if W ∈ H(Ω) ⊂ H(curl, Ω), then the chiral reciprocity
gap functional can be seen as an integral operator R : H(Ω)→ L2

t (Λ), given by:

R(W)(x0) = R(Ex0(·, p(x0)), W)p(x0) , x0 ∈ Λ . (23)

The reciprocity gap functional method is based on the solvability of an integral
equation for R, which contains an appropriate family of solutions in H(Ω). Usually,
we use a set of either single layer potentials or Hergotz wave functions. Here, for the
determination of the boundary of D, chiral Herglotz wave functions will be employed,
because these functions satisfy density properties which will be used later. In Reference [2],
the electric Eg and magneticHg chiral Herglotz wave functions have been defined and are
given by

Eg = EgL + EgR , Hg = −i
√

ε

µ

(
EgL − EgR

)
,

where

EgL(x) =
∫

S2
gL(d̂L)eiγL d̂L ·x ds(d̂L) , (24)

EgR(x) =
∫

S2
gR(d̂R)eiγR d̂R ·x ds(d̂R) , (25)

are the LCP and the RCP Beltrami Herglotz fields, with kernels gL and gR, respectively,
and d̂L, d̂R ∈ S2. In particular, for the kernels, we have gA : S2 → T2

A(S
2), A = L, R, where

T2
L(S

2) =
{

bL ∈
(

L2(S2)
)3 : ν · bL = 0 , ν× bL = −ibL

}
,

T2
R(S

2) =
{

bR ∈
(

L2(S2)
)3 : ν · bR = 0 , ν× bR = ibR

}
.

In addition, we define the following space:

T2
LR(S

2) =
{

b = bL + bR : bL ∈ T2
L(S

2) , bR ∈ T2
R(S

2)
}

,

with the inner product:

< b, h >T2
LR(S

2)= (bL, hL)T2
L(S

2) + (bR, hR)T2
R(S

2) ,

where bA, hA, A = L, R, are the Beltrami fields of b and h, respectively, and
(bA, hA)T2

A(S
2) =

∫
S2 bA · hAds [2]. Let

Ez(x, q, γb) =
kb

2γ2
b

q ·
{(

γbL Ĩ +
1

γbL
∇∇+∇× Ĩ

)
eiγbL |x−z|

4π|x− z|

+

(
γbR Ĩ +

1
γbR
∇∇−∇× Ĩ

)
eiγbR |x−z|

4π|x− z|

}
,
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be the electric dipole with polarization q ∈ R3 located at z in a chiral medium. We study
the solvability of the integral equation:

R(E, Eg) = R(E, Ez(·, q, γb)) , (26)

with respect to g in T2
LR(S

2).
We will prove that the operator R, under appropriate conditions, is injective and has

dense range.

Lemma 1. If ΓI is not empty then the operator R : H(Ω)→ L2
t (Λ), defined by (23) is injective.

Proof. We assume that RW = 0. Then, R(Ex0(·, p), W) = 0 for all x0 ∈ Λ and p ∈ R3.
On (22), we apply the second vector Green’s theorem for the first integral, Gauss’ theorem
for the second integral for E, W in Ω\D, which are both solutions of (15), we use the
boundary conditions on ∂D to take

0 =
∫

∂D
[(ν× E) · ∇ ×W − (ν×W) · ∇ × E]ds− 2βbγ2

b

∫
∂D

(ν× E) ·Wds

= −
∫

ΓD

(ν×W) · ∇ × E ds

−
∫

ΓI

E ·
[

ν×∇×W − i
γ2

bλ

kb
(ν×W)× ν− βbγ2

b(ν×W)

]
ds . (27)

Let Ĕ be the unique solution of the boundary value problem:(
k−2 − β(x)2η(x)

)
∇×∇× Ĕ− 2β(x)η(x)∇× Ĕ− η(x)Ĕ = 0 in R3 \ D , (28)

ν×
(
Ĕ−W

)
= 0 on ΓD , (29)

ν×∇×
(
Ĕ−W

)
= i

γ2
bλ

kb

[
ν×

(
Ĕ−W

)]
× ν + βbγ2

bν×
(
Ĕ−W

)
on ΓI , (30)

x
|x| × ∇× Ĕ− β0γ2

0
x
|x| × Ĕ +

iγ2
0

k0
Ĕ = o

(
1
|x|

)
, |x| → ∞ , (31)

uniformly in all directions of
x
|x| ∈ S2 .

Substituting ν×W and ν×∇×W, from (29) and (30) into (27), we take

0 = −
∫

ΓD

(ν× Ĕ) · ∇ × E ds

−
∫

ΓI

E ·
[

ν×∇× Ĕ− i
γ2

bλ

kb
(ν× Ĕ)× ν− βbγ2

b(ν× Ĕ)

]
ds . (32)

The total electric field E is given by:

E = p · B̃(·, x0) + Es .

Hence, using (32) and the boundary conditions (7) and (8), we get

0 =
∫

∂D

[(
ν×

(
p · B̃(·, x0) + Es

))
· ∇ × Ĕ−

(
ν× Ĕ

)
· ∇ ×

(
p · B̃(·, x0) + Es

)]
ds

− 2βbγ2
b

∫
∂D

[(
ν×

(
p · B̃(·, x0) + Es

))
· Ĕ
]
ds
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and taking into account that the fields Ĕ and Es are both radiating solutions of (28), we have:

−p ·
{∫

∂D

[
B̃(·, x0) · (ν×∇× Ĕ) + (∇× B̃(·, x0)) · (ν× Ĕ)

]
ds

−2βbγ2
b

∫
∂D

B̃(·, x0) · (ν× Ĕ)ds
}

= 0 .

From the Stratton-Chu type formula (10) for chiral media, we take

p · Ĕ(x0) = 0 ,

for arbitrary polarization p, and therefore ν× Ĕ(x0) = 0 for x0 ∈ Λ. Then, by the unique-
ness of the electromagnetic scattering in a chiral environment for a perfect conductor [1,3],
we conclude that Ĕ = 0 outside the surface Λ. Applying unique continuation, we have
Ĕ = 0 in the domain between the boundary ∂D and the surface Λ. Therefore,

ν×W = 0 on ΓD ,

ν×∇×W − i
γ2

bλ

kb
(ν×W)× ν− βbγ2

bν×W = 0 on ΓI

and using the uniqueness of the interior partially coated chiral electromagnetic problem
for W, implying W = 0.

Lemma 2. If ΓI is not empty then the operator R : H(Ω) → L2
t (Λ) defined by (23) has

dense range.

Proof. Let q ∈ L2
t (Λ), such that (RW, q)L2

t (Λ) = 0 for all W ∈ H(Ω). We will prove that
q = 0. In view of the bilinearity of functionalR and the definition of operator R, we get

(RW, q)L2
t (Λ) =

∫
Λ
R(Ex0(·, α(x0)), W)ds ,

where α = (p · q)p. If we define

E(x) =
∫

Λ
Ex0(x, α(x0))ds(x0) ,

then, from (22) and the assumption for q, we have that

R(E , W) = 0 .

Using Green’s and Gauss’ theorems for W, E in Ω\D as in Lemma 1 and taking into
account the boundary conditions on ∂D, we conclude that

R(E , W) = −
∫

ΓD
(ν×W) · ∇ × Eds

−
∫

ΓI

E ·
[

ν×∇×W − i
γ2

bλ

kb
(ν×W)× ν− βbγ2

b(ν×W)

]
ds = 0 ,

for all W ∈ H(Ω). The density of the chiral Herglotz wave functions has been used in order

to prove that the set {ν ×W|ΓD , ν × ∇ ×W − i
γ2

bλ

kb
(ν ×W) × ν − βbγ2

b(ν ×W) |ΓI} is

dense in Y(ΓD)× L2
t (ΓI). This follows from the fact that H(Ω) contains the chiral Herglotz

wave functions, given by (24) and (25) (see [2,29]), which satisfy the Equation (3) and
∇×∇× QA − γ2

AQA = 0, A = L, R. In addition, we have taken into account that the
interior mixed impedance boundary value problem (15)–(17) is well-posed. Therefore,
ν×∇× E = 0 and ν× E = 0 on ∂D. Hence, E has zero Cauchy data on ∂D and therefore
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E = 0 in the domain between Λ and ∂D. Finally, taking into account the jump relations [3]
of ∇× E across Λ, we arrive at α = 0 on Λ. Therefore, (p · q)p = 0 for all p ∈ L2

t (Λ),
hence q = 0.

4. The Reconstruction of the Shape

These properties of the chiral reciprocity gap operator are used for the determination
of the boundary of the scatterer D. The main result of this paper is the following theorem.

Theorem 2. Assume that ΓI is not empty.
(i) Let z ∈ D. Then, for a given ε > 0 there exists a gε

z ∈ T2
LR(S

2) such that

||R(E, Egε
z )−R(E, Ez(·, q, γb))||L2(Λ) < ε

and the chiral Herglotz wave function Egε
z converges to the solution of interior boundary value

problem in X(D, ΓI) as ε→ 0.
(ii) For a fixed ε > 0, we get

lim
dist(z,∂D)→0

||Egε
z ||X(D,ΓI)

= ∞ , lim
dist(z,∂D)→0

||gε
z ||T2

LR(S
2) = ∞ .

(iii) For z ∈ R3\D and ε > 0, if gε
z ∈ T2

LR(S
2) satisfies

||R(E, Egε
z )−R(E, Ez(·, q, γb))||L2(Λ) < ε ,

then we have that
lim
ε→0
||Egε

z ||X(D,ΓI)
= ∞ , lim

ε→0
||gε

z ||T2
LR(S

2) = ∞ .

Proof. (i) Suppose z ∈ D. Taking into account that E is the total field and W and Ez(·, q, γb)
are solutions to Equation (11) in Ω\D and using the mixed boundary conditions on D,
we have that

R(E, W)−R(E, Ez(·, q, γb)) = −
∫

∂D
[ν×W − ν× Ez(·, q, γb)] · ∇ × E ds .

Taking into account that the set of chiral Herglotz functions is dense in H(Ω) with
respect to the H(curl, D) norm and using the trace theorem it follows that for every
ε > 0 there exists a chiral electric Herglotz function Egε

z such that: ν× Egε
z approximates

ν× Ez(·, q, γb) with respect to Y(ΓD) norm, and ν×∇×Egε
z − i γ2

b λ

kb
(ν×Egε

z )× ν− βbγ2
b(ν×

Egε
z ) approximates ν×∇× Ez(·, q, γb)− i γ2

b λ

kb
(ν× Ez(·, q, γb))× ν− βbγ2

b(ν× Ez(·, q, γb))

with respect to L2
t (ΓI) norm. In addition, gε

z solves by approximation the Equation (26) and
Egε

z converges to the solution of the mixed chiral interior boundary value problem (15)–(17).
(ii) Taking into account that Ez(·, q, γb) blows up as z approaches the boundary ∂D from
inside, with respect to the X(D, ΓI) norm, we conclude: limdist(z,∂D)→0 ||Egε

z ||X(D,ΓI)
= ∞

and limdist(z,∂D)→0 ||gε
z ||T2

LR(S
2) = ∞, with fixed ε > 0 .

(iii) Let z ∈ Ω\D. The total electric field E(x) ≡ Ex0(x, p), due to the incident point-source
Ei

x0
(x, p), is given by:

E(x) ≡ Ex0(x, p) = p · B̃(x, x0) + Es
x0
(x, p) , (33)

where Es
x0
(x, p) is the corresponding scattered field. From (33) and the definition (22)

we obtain
R(E, Ez(·, q, γb)) = I1 + I2 ,
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where

I1 =
∫

∂Ω

[(
ν×

(
p · B̃(x, x0)

))
· ∇ × Ez(x, q, γb)− (ν× Ez(x, q, γb)) · ∇ ×

(
p · B̃(x, x0)

)]
ds(x)

− 2βbγ2
b

∫
∂Ω

(
ν×

(
p · B̃(x, x0)

))
· Ez(x, q, γb) ds(x) ,

I2 =
∫

∂Ω

[(
ν× Es

x0
(x, p)

)
· ∇ × Ez(x, q, γb)− (ν× Ez(x, q, γb)) · ∇ × Es

x0
(x, p)

]
ds(x)

− 2βbγ2
b

∫
∂Ω

(
ν× Es

x0
(x, p)

)
· Ez(x, q, γb) ds(x) ,

For z ∈ Ω\D, the function Ez(x, q, γb) is the fundamental solution of

∇×∇× E− 2βbγ2
b∇× E− γ2

b E = 0 (34)

and p · B̃(x, x0), x ∈ Ω\D, is a a solution of (34). Hence, I1 is an integral representation
Stratton-Chu type in chiral media (10) for −p · B̃(z, x0), z ∈ Ω\D. By making use of the
reciprocity properties [6]

B̃(x, x0) =
[

B̃(x0, x)
]>

, ∇x × B̃(x, x0) =
[
∇x0 × B̃(x0, x)

]>
,

where > denotes transposition, we conclude that the background dyadic Green’s function
solves (34) with respect to x0. Hence, Es

x0
(x, p) satisfies the same equation with respect

to x0. Therefore, the integral I2 gives a solution W(x0) of (34). Let Egε
z be a chiral electric

Herglotz functions such that

||R(E, Egε
z )−R(E, Ez(·, q, γb))||L2(Λ) < ε .

From the definition (22) and the boundary conditions (7) and (8), we obtain

R(E, Egε
z ) = −

∫
ΓD

(ν× Egε
z ) · ∇ × E ds

−
∫

ΓI

E ·
[

ν×∇× Egε
z − i

γ2
bλ

kb
(ν× Egε

z )× ν− βbγ2
b(ν× Egε

z )

]
ds .

Therefore

R(E, Egε
z )−R(E, Ez(·, q, γb)) = −

∫
ΓD

(ν× Egε
z ) · ∇ × E ds

−
∫

ΓI

E ·
[

ν×∇× Egε
z − i

γ2
bλ

kb
(ν× Egε

z )× ν− βbγ2
b(ν× Egε

z )

]
ds−W(x0) + p · B̃(x, x0) . (35)

We assume that ||Egε
z ||X(D,ΓI)

< c, with c constant, positive and independent of ε.
Applying the trace theorem, we take the trace of Egε

z also bounded, with respect to the
corresponding norms. Therefore, there exists a weakly convergent subfamily converging
to a function V ∈ X(D, ΓI) as ε→ 0. For x0 ∈ Λ, we set:

U(x0) = −
∫

ΓD

(ν×V) · ∇ × Ex0(·, p) ds

−
∫

ΓI

E ·
[

ν×∇×V − i
γ2

bλ

kb
(ν×V)× ν− βγ2

b(ν×V)

]
ds . (36)

From (35) and (36), we obtain:

U(x0) = W(x0) + p · B̃(z, x0), x0 ∈ Λ . (37)
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Taking into account that the functions U(x0) and W(x0) are radiating solutions
of (34) and using the unique continuation principle, we conclude that (37) holds true
in R3\

(
D ∪ {z}

)
. If we now let x0 → z, then we arrive at a contradiction.

Remark 1. The determination of the boundary ∂D of the scatterer is based on the integral Equation (26),
which contains chiral Herglotz functions in H(Ω). In particular, if Egε

z is a solution of (26), then the
boundary ∂D of the scatterer is reconstructed from points z, with limε→0 ||gε

z ||T2
LR(S

2) = ∞. It is obvi-
ous that the boundary ∂D cannot be found from the limε→0 ||Egε

z ||X(D,ΓI)
= ∞ since the corresponding

norm is defined on the unknown scatterer D. Alternatively, one can use instead of the chiral Herglotz
functions appropriate potentials [3,10].

5. The Determination of the Surface Impedance

Finally, after determining D, we will establish an expression for the surface impedance
λ. In particular, we prove the following theorem.

Theorem 3. Let Ez be the solution of (15)–(17) for a fix point z ∈ D. Then, the surface impedance
λ is given by

λ =
kb

2γ2
b

Im(q · Ez(z)) + Iz(Ω, q, γb)∫
∂D |ν× (Ez − Ez(·, q, γb))|2ds

, (38)

where the integral

Iz(Ω, q, γb) = −i
∫

∂Ω

[
(ν× Ez(·, q, γb)) · ∇ × Ez(·, q, γb)− (ν× Ez(·, q, γb)) · ∇ × Ez(·, q, γb)

]
ds

+ 2iβbγ2
b

∫
∂Ω

(ν× Ez(·, q, γb)) · Ez(·, q, γb) ds

is depended on z, Ω and q.

Proof. For a fix point z ∈ D, we consider the unique solution Ez of the interior mixed
boundary value problem (15)–(17). We define the function:

Uz(x) = Ez(x)− Ez(x, q, γb), x ∈ D

and we evaluate the integral:

I =
∫

∂D

[
(ν×Uz) · ∇ ×Uz − (ν×Uz) · ∇ ×Uz]ds− 2βbγ2

b

∫
∂D

(ν×Uz) ·Uzds .

Taking into account the boundary conditions

ν×Uz = 0 on ΓD ,

ν×∇×Uz = i
γ2

b
kb

λ(ν×Uz)× ν + βbγ2
bν×Uz on ΓI ,

we have that

I = 2i
γ2

bλ

kb

∫
ΓI

|ν×Uz|2ds .

Furthermore, in view of the bilinearity of the integral I, we have

I = I1 + I2 + I3 + I4 , (39)



Mathematics 2021, 9, 104 13 of 14

where

I1 =
∫

∂D

[
(ν× Ez) · ∇ × Ez − (ν× Ez) · ∇ × Ez]ds

− 2βbγ2
b

∫
∂D

(ν× Ez) · Ez ds

I2 = −
∫

∂D

[
(ν× Ez) · ∇ × Ez(·, q, γb)− (ν× Ez(·, q, γb)) · ∇ × Ez

]
ds

+ 2βbγ2
b

∫
∂D

(ν× Ez) · Ez(·, q, γb) ds

I3 = −
∫

∂D

[
(ν× Ez(·, q, γb)) · ∇ × Ez − (ν× Ez) · ∇ × Ez(·, q, γb)

]
ds

+ 2βbγ2
b

∫
∂D

(ν× Ez(·, q, γb)) · Ez ds

I4 =
∫

∂D

[
(ν× Ez(·, q, γb)) · ∇ × Ez(·, q, γb)− (ν× Ez(·, q, γb)) · ∇ × Ez(·, q, γb)

]
ds

− 2βbγ2
b

∫
∂D

(ν× Ez(·, q, γb)) · Ez(·, q, γb) ds

For the evaluation of I1, we apply the second vector Green’s theorem for the first
integral and Gauss’ theorem for the second integral for the functions Ez and Ez in D and
taking into account that Ez, Ez are solutions of (15) we get I1 = 0. A similar application in
Ω\D for Ez(·, q, γb) and Ez(·, q, γb) gives

I4 =
∫

∂Ω

[
(ν× Ez(·, q, γb)) · ∇ × Ez(·, q, γb)− (ν× Ez(·, q, γb)) · ∇ × Ez(·, q, γb)

]
ds

− 2βbγ2
b

∫
∂Ω

(ν× Ez(·, q, γb)) · Ez(·, q, γb) ds .

Finally, using the representation (10) with Ez = q · B̃(·, z) we have that I2 = −q · Ez

and I3 = q · Ez. Substituting the values of the integrals I1 to I4 in (39), we obtain (38).

6. Conclusions

In this paper, the reciprocity gap functional method has been employed to reconstruct
scatterers with mixed boundary conditions, embedded in a piecewise chiral medium.
The importance of this method lies in the fact that we avoid the need to compute Green’s
function of the background medium. In the basic integral Equation (26) of the method,
we have used the chiral Herglotz wave functions, which form a dense set of solutions of (3).
The solution g of this equation has been employed to determine the surface impedance.
If the chirality measures β0 and β1 become zero, then the chirality reciprocity gap functional
coincides with the corresponding functional in achiral media. In the future, the present
method should be extended to solve inverse transmission problems in chiral media.
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