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Abstract: We extend the agent‑based models for knowledge diffusion in networks, restricted to ran‑
dommindless interactions and to “frozen” (static) networks, in order to take into account intelligent agents
and network co‑evolution. Intelligent agents make decisions under bounded rationality. This is the key
distinction of intelligent interacting agents compared to mindless colliding molecules, involved in the
usual diffusion mechanism resulting from accidental collisions. The co‑evolution of link weights and
knowledge levels is modeled at the local microscopic level of “agent‑to‑agent” interaction. Our network
co‑evolution model is actually a “learning mechanism”, where weight updates depend on the previ‑
ous values of both weights and knowledge levels. The goal of our work is to explore the impact of
(a) the intelligence of the agents, modeled by the selection‑decision rule for knowledge acquisition,
(b) the innovation rate of the agents, (c) the number of “top innovators” and (d) the network size. We find
that rational intelligent agents transform the network into a “centralized world”, reducing the entropy of
their selections‑decisions for knowledge acquisition. In addition, we find that the average knowledge,
as well as the “knowledge inequality”, grow exponentially.

Keywords: networks; knowledge diffusion; co‑evolution dynamics; agent‑based modeling; com‑
puter simulations; bounded rationality; intelligent agents; entropy; network centralization; innova‑
tion rate

1. Introduction
The increasing complexity of the highly interconnected 21st century economy [1–4]

is modeled in terms of knowledge networks [5–7]. The emerging dynamics of knowledge
in complex networks depends on 11 Conditioning Factors (CF) [8–11]:
(CF1) The structure of the network;
(CF2) The evolutionary dynamics of the network;
(CF3) The presence of agents creating knowledge (innovative agents);
(CF4) The initial knowledge of the agents;
(CF5) The presence of agents with false beliefs (negative knowledge level);
(CF6) The presence of unreliable communication channels (negative weights);
(CF7) The selection rule (s) of agents for communication and knowledge acquisition;
(CF8) The filtering rule (f) of agents for excluding other agents for knowledge acquisition;
(CF9) The order of implementation of the selection rule (CF7) and the filtering rule (CF8)
by the agents of the network;
(CF10) The attacks at nodes or links;
(CF11) The position of experts (highly knowledgeable agents) within the network.

Thedependence onnetwork structure (CF1)was studied for regular, random, and small‑
world networks [12–14], as well as for scale‑free and hierarchal networks [15–17]. The de‑
pendence on network evolution (CF2) was studied for networks with probabilistic edge‑
rewiring [18–21]. The presence of agents creating knowledge (CF3) increases significantly
the speed of knowledge growth [22,23]. However, the knowledge stock is rising with
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a high level of disparity for different knowledge levels. The dependence on the initial
knowledge levels (CF4) has been addressed, revealing that agents with low initial knowl‑
edge may outperform agents with higher initial knowledge [8]. The presence of initial
false beliefs (CF5) and unreliable communication channels (CF6) has been addressed, re‑
vealing that initial false beliefs have insignificant impact on knowledge dynamics, while
unreliable communication channels undermine seriously and persistently the process of
knowledge acquisition [8]. A comparison of four different selection rules (s) (CF7) has been
investigated, revealing that knowledge attainment can be significantly improved, simply
by raising the local awareness of agents, in order to be able to implement more fruitful se‑
lections among their neighboring agents [9]. Concerning the issue of “filtering” agents (f)
who are considered inappropriate for knowledge acquisition (CF8), both knowledge gain
and knowledge stock become higher when the adopted “knowledge‑exchange threshold”
is larger [20]. Concerning the impact of the order of implementation of “Selection” ver‑
sus “Filtering” (CF9), it was found [9] that knowledge attainment is significantly faster,
if the conventional [13,14,18,20] rule of “Selection” before “Filtering” (fs) is reversed: “Se‑
lection” after “Filtering” (sf). Concerning attacks on knowledge networks (CF10), it was
found [24] that the damage caused by removing nodes is ordered, namely, {high degree} >
{high knowledge} > {random} > {low knowledge}, where {X} denotes the damage resulting
from removing nodes with property X. The study of targeted link attacks revealed that “in‑
fecting” links is more harmful than “breaking” links [8]. Concerning (CF11), it was found
that, if agents implement intelligent selections (first “filter out” the in‑neighbors of lower
knowledge and then “select”), then knowledge spread is much faster compared to placing
experts in key network positions [10].

The conventional agent‑based models for knowledge diffusion in networks are lim‑
ited to random mindless interactions among the agents [13,14,18,20]. However, in real
communication networks, the agents (human beings or intelligent machines) are able to
make mindful decisions for knowledge acquisition. This is the key distinction of intelli‑
gent interacting agents compared to mindless colliding molecules, involved in the usual
diffusion mechanism resulting from accidental collisions. The decisions of intelligent ra‑
tional agents are realized under bounded rationality [25,26]. Agents with higher intelli‑
gence have lower boundof rationality. Moreover, the conventional agent‑basedmodels for
knowledge diffusion in networks assume implicitly that diffusion takes place on “frozen”
(static) networks [12–18,23,24,27,28]. As a result, evolution is restricted to the evolution of
agents’ knowledge only. In reality, however, the network is also evolving, as the weights
change, due to the interplay between knowledge change and structural change. As knowl‑
edge changes, the weights of the links adapt accordingly (learning), and conversely, as the
weights change, the resulting knowledge transfers are enhanced or limited. Open‑Source‑
Software developer networks and scientific collaboration networks are well‑known real‑
world examples, where the co‑evolution of links’ weights with agents’ knowledge takes
place [20]. We also investigated network co‑evolution in 4 real organizational networks,
where we found that structural balance emerges concurrently with attitude polarization
or domination [29].

The goal of thiswork is tomodel and explore the diffusion of knowledge in co‑evolving
networks of intelligent interacting agents. Using agent‑based modeling, the knowledge is
diffused due to local microscopic interactions among the agents. We shall formulate the
co‑evolution of knowledge and weights at the microscopic level of “agent‑to‑agent” in‑
teraction.

We investigate the impact of two conditioning factors, namely, (CF7) and (CF3), on the
emerging dynamics of network co‑evolution. The impact of the selection rule (s) (CF7)
is assessed in terms of different probabilistic selection‑decision rules. These rules corre‑
spond to different bounds of rationality and therefore to different intelligence levels of
the selecting agents. Higher intelligence is associated with lower bound of rationality.
The impact of innovative agents (CF3), is assessed in terms of different innovation rates
and different number of “top innovators”.
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The paper is organized as follows. The relevant definitions and assumptions of our
model are presented in Section 2. The parameter values of the simulations, as well as the
assessment criteria for the emerging dynamics are presented in Section 3. The impact of
different probabilistic selection rules (CF7), of different innovation rates (CF3), of different
numbers of “top‑innovators” (CF3) and of different network sizes in Sections 4–7 corre‑
spondingly. The key findings of our work are summarized and discussed in Section 8.

2. The Model
We formulate knowledge diffusion in networks of agents, assuming that each agent

selects another agent to gain knowledge, at each time 𝑡 = 0, 1, …. We provide below the
relevant definitions and modeling assumptions.

Definition 1. (Knowledge Networks).
Knowledge networks consist of agents, denoted as 𝜅 = 1, 2, … , 𝑁 , with knowledge levels

𝜓𝜅(𝑡) at time 𝑡 = 0, 1, … Knowledge levels are non‑negative real values 𝜓𝜅(𝑡) ≥ 0 so that, agents
with higher knowledge level are effectively more knowledgeable than agents with lower knowl‑
edge level. Knowledge levels may be assessed by experts using any methodology [30]. The links
of the network are the communication channels between the agents through which knowledge is
transferred. Each link 𝜆 → 𝜅 is characterized by the corresponding weight w𝜆→𝜅(𝑡) = w𝜆𝜅(𝑡).
The weight w𝜆𝜅(𝑡) incorporates the knowledge transfer efficiency from agent 𝜆 to agent 𝜅, taking
values 0 ≤ w𝜆𝜅(𝑡) ≤ 1. The diagonal weight (self‑weight) w𝜅𝜅(𝑡) incorporates the capability of
agent 𝜅 for innovation, taking non‑negative valuesw𝜅𝜅(𝑡) ≥ 0.
Assumption 1. (One Agent is Selected at a Time).

The knowledge upgrade of each agent 𝜅 during the time interval (𝑡, 𝑡 + 1] is the difference:
𝜓𝜅(𝑡 + 1) − 𝜓𝜅(𝑡). The durations (𝑡, 𝑡 + 1] are selected‑specified so that the knowledge of the agents
may change by one “link event” only among their in‑neighbors. In this way, the reduction of
efficiency and reliability associated with multi‑tasking is avoided [31–33]. However, in the other
direction, an agent may have more than one disciples at the same time [12,17,34].

Definition 2. (Probabilistic Selection Rules for Knowledge Acquisition).
The selection of the in‑neighbor 𝜆 by agent 𝜅, with 𝜆 ≠ 𝜅, for knowledge acquisition is spec‑

ified by the value of the selection‑decision function 𝔇s

𝜅(𝑡). Each selection function 𝔇s

𝜅(𝑡) imple‑
ments some selection rule s, specified by the corresponding selection probability ps𝜆𝜅(𝑡). For ex‑
ample, 𝔇s

𝜅(𝑡) = 𝜆 means that agent 𝜆 was selected by agent 𝜅 at time 𝑡 with probability ps𝜆𝜅(𝑡).
Each selection rule s indicates the bound of rationality of the intelligent, rationally selecting agent
𝜅 [25,26]. Agents with lower bound of rationality are considered as more intelligent. The bound of
rationality is lower, when decisions‑selections are more effective. We consider four representative
probabilistic selection rules [9] (Table 1). The term J𝑄K is the Iverson bracket [35] which converts
Boolean values to numbers 0, 1:

J𝑄K = {
1, 𝑖𝑓 𝑄 𝑖𝑠 𝑇 𝑟𝑢𝑒
0, 𝑖𝑓 𝑄 𝑖𝑠 𝐹 𝑎𝑙𝑠𝑒

Assumption 2. (Knowledge Transfer is Unidirectional).
Knowledge transfer between two agents may take place only from the agent with higher knowl‑

edge to the agent with lower knowledge, i.e., agent 𝜅 may upgrade his/her knowledge level by the
selected in‑neighbor agent 𝜆, only if: 𝜓𝜆(𝑡) − 𝜓𝜅(𝑡) > 0. The opposite direction is never realized.
This assumption is a “Filtering Rule” (f) over the set of in‑neighbors, regarding the possibility
for knowledge upgrade of the selecting agent 𝜅. The criterion conditioning the “Filtering Rule”
(f) is the sign of the knowledge difference 𝜓𝜆(𝑡) − 𝜓𝜅(𝑡) between the sender 𝜆 and the recipient 𝜅
of knowledge.
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Table 1. Probabilistic selection rules for knowledge acquisition.

Selection Rule s Selection Probability ps𝜆𝜅 (t) Bound of Rationality

Random
s = 𝓇 p𝓇

𝜆𝜅 (𝑡) = Jw𝜆𝜅 (𝑡)≠0K
∑N

𝜈 = 1
𝜈 ≠ 𝜅

Jw𝜈𝜅 (𝑡)≠0K
All incoming links have equal selection
probability.
There is no rationality, as
communication is random.
The agent 𝜅 has no intelligence.

Knowledge
s = 𝓀 p𝓀

𝜆𝜅 (𝑡) = Jw𝜆𝜅 (𝑡)≠0K·𝜓𝜆(𝑡)
∑N

𝜈 = 1
𝜈 ≠ 𝜅

(Jw𝜈𝜅 (𝑡)≠0K·𝜓𝜈 (𝑡))

More knowledgeable in‑neighbors have
higher selection probability
Rationality is limited to the awareness of
the knowledge of the in‑neighbors.
The agent 𝜅 has knowledge‑based
intelligence.

Weight
s = 𝓌 p𝓌

𝜆𝜅 (𝑡) = w𝜆𝜅 (𝑡)
∑N

𝜈 = 1
𝜈 ≠ 𝜅

w𝜈𝜅 (𝑡)

Higher incoming weights have higher
selection probability.
Rationality is limited to the awareness of
the incoming weights.
The agent 𝜅 has weight‑based
intelligence.

Knowledge‑Weight
s = 𝓌𝓀 p𝓌𝓀

𝜆𝜅 (𝑡) = w𝜆𝜅 (𝑡)·𝜓𝜆(𝑡)
∑N

𝜈 = 1
𝜈 ≠ 𝜅

(w𝜈𝜅 (𝑡)·𝜓𝜈 (𝑡))

Higher product of 𝑤𝑒𝑖𝑔ℎ𝑡·𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒
have higher selection probability
Rationality is limited to the awareness of
the incoming weights and the
knowledge of the in‑neighbors.
The agent 𝜅 has both knowledge and
weight‑based intelligence.
The agent 𝜅 has finer discrimination
capability, lower bound of rationality
and higher intelligence (Definition 2),
compared to the other cases.

Definition 3. (Knowledge Transfer Dynamics).
The Knowledge Transfer Dynamics for each agent 𝜅 is as follows:

𝜓𝜅(𝑡 + 1) = 𝜓𝜅(𝑡) +
N

∑
𝜈 = 1
𝜈 ≠ 𝜅

Φ𝜈𝜅(𝑡) (1)

where Φ𝜈𝜅(𝑡) is the formula for Knowledge Transfer from agent 𝜈 to agent 𝜅, with 𝜈 ≠ 𝜅:

Φ𝜈𝜅(𝑡) = J𝔇s

𝜅(𝑡) = 𝜈K·J𝜓𝜈(t) − 𝜓𝜅(𝑡) > 0K·w𝜈𝜅(𝑡)·[𝜓𝜈(t) − 𝜓𝜅(𝑡)]

Remark 1. The Knowledge Transfer Dynamics Equation is stochastic, non‑linear and non‑
homogeneous.

The Diffusion Equation (1) is:
• Stochastic due to the probabilistic selection 𝔇s

𝜅(𝑡) (Definition 2, Table 1);
• Non‑linear due to the term J𝜓𝜈(𝑡) − 𝜓𝜅(𝑡) > 0K (Assumption 2);
• Non‑homogeneous due to the different, non‑stationary weights w𝜈𝜅(𝑡) (Definition 1).

The Iverson Bracket J𝔇s

𝜅(𝑡) = 𝜈K incorporates the probabilistic selections of the agents for
knowledge acquisition into the dynamic law of diffusion. The Iverson Bracket J𝜓𝜈(𝑡) − 𝜓𝜅(𝑡) > 0K
is serving as a “valve”, indicating the allowed direction of knowledge, from the more knowledgeable
to the less knowledgeable agent. Knowledge Transfer is proportional to the knowledge difference
𝜓𝜈(𝑡) − 𝜓𝜅(𝑡) between the provider 𝜈 and the recipient 𝜅. This assumption is common in knowledge
transfer models, as for example, Formula (2) in [12], Formula (3) in [13], Formula (6) in [14], For‑
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mula (2) in [17], Formula (1) and (3) in [18], Formula (3) in [23], Formula (1) in [27], Formula
(4) in [24], Formula (3) and (4) in [36], Formula (3) in [21] and Formula (1) in [28]. However,
the diffusion Equation (1) is a generalization of the above models in order to have the possibility
to implement different selection rules s (Table 1), corresponding to intelligent, non‑random in‑
teractions at the local‑microscopic level. The analogous equation for attitude‑opinion change
incorporates the implementation of selection rules for communication and social influence [37].

Definition 4. (Evolution of the Off‑Diagonal Weights).
We define a local learning rule for the evolution of the off‑diagonal weights w𝜆𝜅(𝑡), which is

driven by the selections 𝔇s

𝜅(𝑡) of the individual agents as follows:
• If the in‑neighbor agent𝜆 is selected (𝔇s

𝜅(𝑡) = 𝜆), the corresponding weightw𝜆𝜅(𝑡)may change
due to the relevance feedback learning.

• If the in‑neighbor agent 𝜆 is not selected (𝔇s

𝜅(𝑡) ≠ 𝜆), the corresponding weight w𝜆𝜅(𝑡) is
subjected to decay with time 𝑡.
In this first exploratory work, we shall assume the simplest case of linear decay, with decay

parameter 𝜁 , taking values 0 < 𝜁 < 1. The parameter𝜁 corresponds to the speed of weakening of the
communication channels, resulting from the passage of time. A lower value of decay parameter 𝜁
makes the weight 𝑤𝜆𝜅(𝑡) vanish more quickly. We assume for simplicity the same decay parameter
𝜁 = 0.99 for all agents 𝜅 = 1, 2, … , 𝑁 . In other words, each weightw𝜆𝜅(𝑡) is weakening by 1% for
each time 𝑡 not selected. The evolution formula for the off‑diagonal weightsw𝜆𝜅(𝑡) is as follows:

w𝜆𝜅(𝑡 + 1) = J𝔇s

𝜅(𝑡) = 𝜆K·[(1 − L𝜆𝜅(𝑡))·w𝜆𝜅(𝑡) + L𝜆𝜅(𝑡)·𝐹𝜆𝜅(𝑡)] + J𝔇s

𝜅(𝑡) ≠ 𝜆K·w𝜆𝜅(𝑡)·𝜁 (2)

F𝜆𝜅(𝑡) = J𝜓𝜆(𝑡) − 𝜓𝜅(𝑡) > 0K is theRelevance Feedback, which in this first exploratory work
takes binary values, 0 or 1, depending on whether some knowledge is transferred via the channel
𝜆 → 𝜅 . If some knowledge is transferred, the channel efficiency (weight) is enhanced, otherwise
it weakens.

L𝜆𝜅(𝑡) = ℓ·JF𝜆𝜅(𝑡) = 1K + (1− ℓ)·JF𝜆𝜅(𝑡) = 0K is the Learning Function, where ℓ is a
parameter implying the learning rate of the weights, taking values 0 < ℓ < 0.5. The learning
functionL𝜆𝜅(𝑡) takes values ℓ or 1 − ℓ, distinguished according to the value of the relevance feedback
F𝜆𝜅(𝑡). That is because we want to incorporate a “slow‑positive” (F𝜆𝜅(𝑡) = 1) and “fast‑negative”
(F𝜆𝜅(𝑡) = 0) effect of the relevance feedback F𝜆𝜅(𝑡) on the evolutionary dynamics of the weights.
If the relevance feedback is positive (F𝜆𝜅(𝑡) = 1), then learning L𝜆𝜅(𝑡) is low (below 0.5), equal to
ℓ ∈ (0, 0.5). On the contrary, if the relevance feedback is zero (F𝜆𝜅(𝑡) = 0), then learning L𝜆𝜅(𝑡) is
high (above 0.5), equal to 1 − ℓ ∈ (0.5, 1). In this first exploratory work, we shall assume learning
rate ℓ = 0.4.
Assumption 3. (Periodic Innovation).

All agents create new knowledge (w𝜅𝜅(𝑡) > 0 for 𝜅 = 1, 2, … ,N, Definition 1) periodically
with period 𝑇 . The period 𝑇 is the innovation rate of the system.

Definition 5. (Selection Function for Innovation Production and Knowledge Acquisition).
Taking into account Assumption 3, the selection function 𝔇𝜅(𝑡) incorporates: (a) the selec‑

tion of distinct agents 𝜈 (with 𝜈 ≠ 𝜅) for knowledge acquisition, based on some selection rule s

(𝔇𝜅(𝑡) = 𝔇s

𝜅(𝑡) = 𝜈), as well as, (b) the self‑selection of agent 𝜅 (𝔇𝜅(𝑡) = 𝜅) for innovation pro‑
duction with period 𝑇 . Therefore, the selection function 𝔇𝜅(𝑡) is defined as follows:

𝔇𝜅(𝑡) =
s

𝑡
𝑇 = ⌊

𝑡
𝑇 ⌋

{
·𝜅 +

s
𝑡
𝑇 ≠ ⌊

𝑡
𝑇 ⌋

{
·𝔇s

𝜅(𝑡) (3)

where 𝑥 is the floor function which returns the largest integer not greater than x. For example,
2.2 = 2 and 2.9 = 2.



Mathematics 2021, 9, 103 6 of 17

Definition 6. (Knowledge Dynamics Equation).
The Knowledge Dynamics Equation for each agent 𝜅 is as follows:

𝜓𝜅(𝑡 + 1) = 𝜓𝜅(𝑡) +
𝑁

∑
𝜈=1

Φ𝜈𝜅(𝑡) (4)

The off‑diagonal elements Φ𝜈𝜅(𝑡) correspond to Knowledge Transfer from each agent 𝜈 to
agent 𝜅, with 𝜈 ≠ 𝜅, (Definition 3). The diagonal element Φ𝜅𝜅(𝑡) corresponds to Innovation Pro‑
duction from agent 𝜅 (see Definition below). Knowledge dynamics in networks is understood and
modeled as spread of knowledge, due to discrete diffusion in the network. This diffusion process is
in general non‑uniform and non‑isotropic, as diffusion in disordered systems [38] and anomalous
biased diffusion [39]. Our model allows moreover the simulation of “active” interactions among
the agents, introduced by selections‑decisions characterized by awareness, resulting in higher intel‑
ligence. These “intelligent selections” (Definition 2, Table 1) are mechanisms of “active” diffusion,
interpreted as awareness propagation in communication networks [40].

Definition 7. (Innovation Production Dynamics)
The Innovation Production Dynamics for each agent 𝜅 is as follows:

𝜓𝜅(𝑡 + 1) = 𝜓𝜅(𝑡) + Φ𝜅𝜅(𝑡) (5)

where Φ𝜅𝜅(𝑡) is the formula for Innovation Production from agent 𝜅:

Φ𝜅𝜅(𝑡) = J𝔇𝜅(𝑡) = 𝜅K·𝑤𝜅𝜅(𝑡)·𝜓𝜅(𝑡)

Remark 2. Innovation production is proportional to knowledge level 𝝍𝜿(t).
This assumption is common in innovation production models, as for example, formula (1)

in [12], formula (1) in [34], formula (1) in [14], Formula (1) in [17], Formula (5) in [23], Formula
(2) in [28]. We want to focus on the impact of different innovation rates 𝑇 (Assumption 3). There‑
fore, in this first exploratory work, we shall assume stationary self‑weights (𝑤𝜅𝜅(𝑡) = 𝑤𝜅𝜅) with
values discussed in Section 3.

Remark 3. Weights‑Knowledge co‑evolution via local “agent‑to‑agent” interactions.
The co‑evolution of weights and knowledge is formulated in terms of evolution equations for

weights (2) and knowledge (4). ThisWeights‑Knowledge co‑evolution equation is a non‑linear
stochastic difference equation, incorporating the actual interplay of weights with knowledge levels
in time. The interdependence of weights with knowledge levels is formulated at the local micro‑
scopic level of “agent‑to‑agent” interaction, the result of which is twofold (Figure 1): On one
hand, there is an upgrade of agents’ knowledge due to the diffusion process. On the other hand,
at the same time, there is amutually dependent update of agents’ weights due to the “experi‑
ence” of communication (feedback) with the selected agent. The simultaneous update of knowledge
and weights is the key distinction of our model, compared to other agent‑based models for knowledge
network co‑evolution, where the updates of knowledge and weights, are not realized simultaneously.
At each time step, they propose a random choice for: either link rewiring only, or knowledge diffusion
only [20,21], excluding simultaneous update. Moreover, in the existing literature of agent‑based
models for knowledge diffusion in networks [18,20,21,41], the evolution of weights from w𝜆𝜅(𝑡) to
w𝜆𝜅(𝑡 + 1) is imposed exogenously. Thus, the evolution of weights and knowledge is not a mu‑
tually dependent evolution. On the contrary, in our model, we observe from equation (2) that the
weights evolve to the value w𝜆𝜅(𝑡 + 1) depending on the previous values of both weights w𝜆𝜅(𝑡)
and knowledge levels 𝜓𝜅(𝑡):

w𝜆𝜅(𝑡 + 1) = 𝑓(w𝜆𝜅(𝑡), 𝔇s

𝜅(w𝜆𝜅(𝑡), 𝜓𝜆(𝑡)),F𝜆𝜅(𝜓𝜆(𝑡), 𝜓𝜅(𝑡)))
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Figure 1. Local Mechanism for Interdependent Co‑evolution of weights and knowledge for each agent 𝜅, 𝜅 = 1, 2, … , 𝑁 ,
at each time 𝑡 = 0, 1, 2, … Knowledge and weights co‑evolve, because the change of knowledge and weights depends
on the values of both knowledge and weights at the previous step. This interdependence of knowledge and weights is
conditioning the network evolution at each step.

This is a learning mechanism [42] where co‑evolution is intrinsic/endogenous.
3. Estimating the Dynamics of Network Co‑Evolution

In order to focus on the impact of factors (CF7) and (CF3) on the emerging co‑
evolutionary dynamics, we study fully connected networks [43]. The impact of the selec‑
tion rule (s) (CF7) is assessed in terms of 4 different probabilistic selection rules (Definition
2, Table 1). The impact of the innovative agents (CF3), is assessed in terms of 3 different
innovation rates (Assumption 3) and 3 different number of “top innovators”. We also ex‑
amine the dependence on network size. The initial network setting is presented in Table 2
and the values of parameters in the simulations in Table 3.

Table 2. Initial network setting.

Knowledge All agents have Equal Initial knowledge level, with value 𝜓𝜅 (t) = 1

Links

Off‑diagonalweights are initially equal, with valuew𝜆𝜅 (𝑡) = 0.5
Fully connected network structure with evolving weights

Diagonal weights are constant in time (Remark 2)
The value of most diagonal weights is w𝜅𝜅 = 0.05.
We assume a small number (5%, 10%, 15%) of randomly distributed
“top innovators” (highly innovative agents) with w𝜅𝜅 = 0.5

Table 3. Simulations.

Parameter Values

Selection Rule s (CF7)
for knowledge acquisition
(Definition 2, Table 1)

Random s = 𝓇
Knowledge s = 𝓀
Weight s = 𝓌
Knowledge and Weight s = 𝓌𝓀

Innovation Rate (CF3)
(period 𝑇 for innovation production, Assumption 3)

Low 𝑇 = 15 steps
Medium 𝑇 = 10 steps
High 𝑇 = 5 steps

Number of Top Innovators (CF3)
(highly innovative agents, Table 2)

Few 5%
Some 10%
Many 15%

Network Size
Small N = 100 agents
Medium N = 200 agents
High N = 300 agents

The off‑diagonal weights 𝑤𝜆𝜅 , incorporating the knowledge transfer efficiency from
agent 𝜆 to agent 𝜅, take values within the interval [0, 1]. We assume that the initial value is
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at the center: 𝑤𝜆𝜅 = 0.5. The selected values in simulations are context‑dependent, for ex‑
ample, (a) in simulations of collective invention dynamics [12], knowledge diffusion [13]
and knowledge transfer [17,28], the off‑diagonal weights 𝑤𝜆𝜅 take values within the same
interval [0, 1], (b) in simulations of the dependence of knowledge transfer on the connec‑
tion structure, the off‑diagonal weights 𝑤𝜆𝜅 take values within the interval [0, 0.5] [18].

Concerning network size, it is not expected that simulationswithmore than 300 agents
will add significantly to the results. This is confirmed by several works on knowledge dy‑
namics in networks, namely, (a) simulations with 150 agents for tacit knowledge transmis‑
sion in online social networks [44] “managers must make sure the number of employees in an
organization is less than 150 if the organization means to run efficiently and becomes the incubator
of the propagation of knowledge and thoughts. 150 is a tipping point. If the number of employees
is more than 150, many organizations will break up” [45,46], (b) simulations with 100 agents
for knowledge diffusion performance in R&D collaboration networks [14], (c) simulations
with 200 agents for coevolution of endogenous knowledge networks and knowledge cre‑
ation [47], (d) simulations with 200 agents for knowledge diffusion dynamics with face‑
to‑face interactions [48], (e) simulations with 100 agents for knowledge diffusion in social
networks, manifesting serendipity [49].

The emerging dynamics of network co‑evolution is assessed in terms of the following:
• The average knowledge of the agents and the “knowledge inequality” (standard devi‑

ation of knowledge of the agents);
• The average selection entropy of the agents;
• The out‑degree centralization of the network.

The definition for the average knowledge of the agents is as follows:

Definition 8. (Average Knowledge).

𝜓(t) =
∑𝑁

𝜅=1 𝜓𝜅(𝑡)
𝑁

The “knowledge inequality” of the agents may be estimated by the standard devia‑
tion [12–14,17,23,27,36]:

Definition 9. (“Knowledge Inequality”—Standard Deviation of Knowledge).

𝜎𝜓 (t) = √
∑𝑁

𝜅=1[𝜓𝜅(𝑡) − 𝜓(𝑡)]
2

𝑁

The relevant definitions for the average selection entropy of the agents are:

Definition 10. (Selection Entropy).
The selection entropy 𝒮𝜅(𝑡) = 𝒮 s

𝜅 (𝑡) of agent 𝜅 is the “in‑entropy” of node 𝜅, computed from
the selection probabilities ps𝜆𝜅(𝑡) of Table 1 as follows:

𝒮𝜅(𝑡) = 𝒮 s

𝜅 (𝑡) = −
𝑁

∑
𝜆 = 1
𝜆 ≠ 𝜅

𝑝s𝜆𝜅(t)·𝑙𝑜𝑔2[ps𝜆𝜅(t)]

The normalized selection entropy ℐ𝜅(𝑡) = ℐ s

𝜅 (𝑡) of agent 𝜅 is as follows:

ℐ𝜅(𝑡) = ℐ s

𝜅 (𝑡) = 𝒮 s

𝜅 (𝑡)
𝒮 s=𝓇

𝜅 (𝑡) = 𝒮 s

𝜅 (𝑡)
log2(𝑁 − 1)
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The average normalized selection entropy ℐ (𝑡) = ℐ s(𝑡) of the agents of the network is as fol‑
lows:

ℐ (𝑡) = ℐ s(𝑡) =
∑𝑁

𝜅=1 ℐ s

𝜅 (𝑡)
𝑁

We shall use the average normalized selection entropy ℐ (𝑡) to estimate the “Selection En‑
tropy”.

The relevant definitions for the centralization of the network are:

Definition 11. (Weighted Out‑Degree).
The weighted out‑degree 𝑑𝑒𝑔𝑜𝑢𝑡

𝜅 (𝑡) of agent 𝜅 is defined as the sum of the outgoing weights
w𝜅𝜈(𝑡) to all its first distinct neighbors:

𝑑𝑒𝑔𝑜𝑢𝑡
𝜅 (𝑡) =

𝑁

∑
𝜈 = 1
𝜈 ≠ 𝜅

w𝜅𝜈(𝑡)

Definition 12. (Weighted Out‑Degree Centrality).
The weighted out‑degree centrality 𝐷𝐸𝐺𝑜𝑢𝑡

𝜅 (𝑡) of agent 𝜅 is defined [50] as the normalized
weighted out‑degree 𝑑𝑒𝑔𝑜𝑢𝑡

𝜅 (𝑡) (Definition 11):

𝐷𝐸𝐺𝑜𝑢𝑡
𝜅 (𝑡) = 𝑑𝑒𝑔𝑜𝑢𝑡

𝜅 (𝑡)
𝑁 − 1 (6)

Definition 13. (Weighted Out‑Degree Centralization).
The centralization of a network [50,51], for the weighted out‑degree centrality 𝐷𝐸𝐺𝑜𝑢𝑡

𝜅 (𝑡)
(Definition 12), is the fraction:

𝐷𝐸𝐺𝑜𝑢𝑡(𝑡) =
∑𝑁

𝜅=1[𝐷𝐸𝐺𝑜𝑢𝑡
𝜉 (𝑡) − 𝐷𝐸𝐺𝑜𝑢𝑡

𝜅 (𝑡)]
𝑁 − 1

where: 𝐷𝐸𝐺𝑜𝑢𝑡
𝜉 (𝑡) = 𝑚𝑎𝑥

𝜅=1,2,…,𝑁{𝐷𝐸𝐺𝑜𝑢𝑡
𝜅 (𝑡)}.

The numerator is the sum of differences between the degree centralities of the most central node
𝜉 and all other nodes 𝜅. The denominator is the theoretically largest sum of such differences in any
network of the same size. The theoretically largest sum of such differences is achieved for the directed
“star” network topology, where the network consists of one “star” (central) node 𝜉 having maximal
out‑going weights to all other “satellite” nodes, and “satellite” nodes have no out‑going weights.
We shall use the weighted out‑degree centralization 𝐷𝐸𝐺𝑜𝑢𝑡(𝑡) to estimate the “Centralization”.
4. The Impact of Intelligence—Selection Rule

The impact of intelligence of the agents (CF7) (Definition 2, Table 1) on the emerging
dynamics of network co‑evolution is assessed by performing simulations for the 4 different
probabilistic selection rules (Table 3), namely, (1) selection by randomness (s = 𝓇), (2) se‑
lection by knowledge level (s = 𝓀), (3) selection by link weight (s = 𝓌), (4) selection by
knowledge level and link weight (s = 𝓌𝓀). Results are illustrated in Figure 2.
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Figure 2. Simulations for the 4 different probabilistic selection rules: (1) random s = 𝓇 (black), (2) knowledge s = 𝓀 (red),
(3) weight s = 𝓌 (blue), (4) knowledge‑weight s = 𝓌𝓀 (green). Results are illustrated for: (a) the average knowledge
(Definition 8, up left), (b) the standard deviation of knowledge (Definition 9, up right), (c) the selection entropy (Definition
10, down left), (d) the centralization (Definition 13, down right). The y axis for the average knowledge (a, up left) and the
standard deviation of knowledge (b, up right) is in log‑10 scale, indicating the exponential increase of knowledge dynamics.
Results are illustrated for 𝑁 = 100 agents with high innovation rate (period 𝑇 = 5 steps), involving 5% top‑innovators.

Remark 4. Average knowledge and “knowledge inequality” are both increasing exponen‑
tially in time.

We observe in Figure 2a,b that the average knowledge, as well as the “knowledge inequality”
(standard deviation of knowledge), are both rising exponentially in time (y axis is in log‑10 scale),
with more or less the same rate ≃ 3.5%. The intelligence (Definition 2, Table 1) of communicat‑
ing agents has negligible impact on the emerging dynamics of average knowledge, as well as on
knowledge inequality, as the diagrams coincide.

Remark 5. Intelligent agents reduce selection entropy.
We observe in Figure 2c that among intelligent interacting agents, the selection entropy is de‑

creasing in time. The selection entropy of non‑intelligent agents, communicating randomly (s = 𝓇,
black line in Figure 2c), does not decrease. This follows from the uniform selection probability (Ta‑
ble 1). The decrease is negligible in the case of knowledge aware intelligent agents (s = 𝓀, red line
in Figure 2c). This follows from the fact that the selection probability for knowledge aware intelli‑
gent agents is very close the uniform selection probability, because almost all neighbors have more
or less the same knowledge, except the few top innovators (Table 2). On the contrary, the selection
entropy of weight aware intelligent agents (s = 𝓌, blue line in Figure 2c) and of knowledge and
weight aware intelligent agents (s = 𝓌𝓀, green line in Figure 2c) is rapidly decreasing almost 50%.
The decrease of selection entropy is significant when intelligent agents are aware of the weights, be‑
cause the selection probability diverges rapidly from the uniform distribution, due to the evolution
formula for the off‑diagonal weights 𝑤𝜆𝜅(𝑡) (Definition 4). More specifically, the initial selection
probability (Table 1) for a link is very low, due to the fully connected structure and the initial equal
weights (Table 2). In the next step, the weights of non‑selected links are weakened with decay pa‑
rameter 𝜁 , while the weights of selected links may either increase or decrease, depending on the
knowledge transfer realized (Definition 4). The resulting selection probability is rapidly diverging
from the initial uniform distribution.
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Remark 6. Intelligent agents centralize the network.
The increase of network centralization is clearly observed in Figure 2d. However, the increase

depends significantly on the intelligence of the agents. Centralization increases about 13% for
non‑intelligent agents, communicating randomly (s = 𝓇, black line in Figure 2d). This increase
results from the evolution formula for the off‑diagonal weights 𝑤𝜆𝜅(𝑡) (Definition 4). At each time,
most of the links are not selected, and therefore, centralization increases. As intelligent agents select
non‑randomly, we observe for the same reason the emergence of stronger centralizations, namely,
about 27% for knowledge aware intelligent agents (s = 𝓀, red line in Figure 2c), about 58% for
weight aware intelligent agents (s = 𝓌, blue line in Figure 2d) and about 70% for weight and
knowledge aware intelligent agents (s = 𝓌𝓀, green line in Figure 2d).

5. The Impact of the Innovation Rate
The impact of the innovation rate of the agents (CF3) (Assumption 3) on the emerging

dynamics of network co‑evolution is assessed by performing simulations for the 3 differ‑
ent innovation rates (Table 3), namely, (1) low innovation rate with period 𝑇 = 15 steps,
(2) medium innovation rate with period 𝑇 = 10 steps, (3) high innovation rate with period
𝑇 = 5 steps. Results are illustrated in Figure 3.

Figure 3. Simulations for the 3 different innovation rates: (1) low rate with period 𝑇 = 15 steps (black), (2) medium rate
with period 𝑇 = 10 steps (blue), (3) high rate with period 𝑇 = 5 steps (red). Results are illustrated for: (a) the average
knowledge (Definition 8, up left), (b) the standard deviation of knowledge (Definition 9, up right), (c) the selection entropy
(Definition 10, down left), (d) the centralization (Definition 13, down right). The y axis for the average knowledge (a, up left)
and the standard deviation of knowledge (b, up right) is in log‑10 scale, indicating the exponential increase of knowledge
dynamics. Results are illustrated for 𝑁 = 100 agents communicating by weight and knowledge (s = 𝓌𝓀), involving 5%
top‑innovators.

Remark 7. Higher innovation rates result in higher average knowledge and higher knowl‑
edge inequality.

We observe in Figure 3a,b that the average knowledge, as well as the “knowledge inequality”
(standard deviation of knowledge), are both rising in time (y axis is in log‑10 scale) exponentially.
Higher innovation rates result in higher exponential increase of average knowledge as well as of
knowledge inequality. The oscillations of knowledge inequality (Figure 3b) are due to the periodic
innovation production (Assumption 3). The oscillations are relatively higher for lower innovation
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rate (black line in Figure 3b). At each instance of innovation, the standard deviation of knowledge
is increasing. However, at each step between two successive innovation instances, the standard
deviation of knowledge is decreasing, because at these intermediate steps, there is only knowledge
diffusion and no innovation.

Remark 8. Higher innovation rates result in stronger selection entropy decrease and stronger
network centralization increase.

The selection entropy (Figure 3c) and the network centralization (Figure 3d) are ranked, with
respect to the innovation rate. As the innovation rate increases, both the selection entropy decrease,
as well as the network centralization increase, become stronger.

6. The Impact of the Number of Top Innovators
The impact of the number of top innovators (CF3) (Assumption 3) on the emerging

dynamics of network co‑evolution is assessed by performing simulations for the 3 differ‑
ent numbers of top innovators (Table 3), namely, 5%, 10%, 15%. Results are illustrated
in Figure 4.

Figure 4. Simulations for the 3 different numbers of top innovators: 5% (black), 10% (blue), 15% (red). Results are illustrated
for: (a) the average knowledge (Definition 8, up left), (b) the standard deviation of knowledge (Definition 9, up right), (c) the
selection entropy (Definition 10, down left), (d) the centralization (Definition 13, down right). The y axis for the average
knowledge (a, up left) and the standard deviation of knowledge (b, up right) is in log‑10 scale, indicating the exponential
increase of knowledge dynamics. Results are illustrated for 𝑁 = 100 agents with high innovation rate (period 𝑇 = 5 steps),
communicating by weight and knowledge (s = 𝓌𝓀).

Remark 9. Fewer “top‑innovators” result in stronger selection entropy decrease and
stronger network centralization increase.

We observe in Figure 4a,b that the average knowledge, as well as the “knowledge inequality”
(standard deviation of knowledge), are both rising exponentially in time (y axis is in log‑10 scale),
with more or less the same rate ≃ 3.5%. The number of top innovators has negligible impact on
the emerging dynamics of average knowledge, as well as on knowledge inequality, as the diagrams
coincide. On the contrary, both the selection entropy and the network centralization depend sig‑
nificantly on the number of top innovators. The selection entropy (Figure 4c) and the network
centralization (Figure 4d) are ranked, with respect to the number of top innovators. As the number
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of top innovators decreases, both the selection entropy decrease, as well as the network centralization
increase, become stronger.

7. The Impact of Network Size
The impact of network size on the emerging dynamics of network co‑evolution is

assessed by performing simulations for the 3 different network sizes (Table 3), namely,
N = 100 agents, N = 200 agents, N = 300 agents. Results are illustrated in Figure 5.

Figure 5. Simulations for the 3 different network sizes: N = 100 agents (black), N = 200 agents (blue), N = 300 agents
(red). Results are illustrated for: (a) the average knowledge (Definition 8, up left), (b) the standard deviation of knowledge
(Definition 9, up right), (c) the selection entropy (Definition 10, down left), (d) the centralization (Definition 13, down right).
The y axis for the average knowledge (a, up left) and the standard deviation of knowledge (b, up right) is in log‑10 scale,
indicating the exponential increase of knowledge dynamics. Results are illustrated for agents with high innovation rate
(period 𝑇 = 5 steps), communicating by weight and knowledge (s = 𝓌𝓀), involving 5% top‑innovators.

Remark 10. Smaller networks give rise to stronger centralization increase.
We observe in Figure 5a,b that the average knowledge, as well as the “knowledge inequality”

(standard deviation of knowledge), are both rising exponentially in time (y axis is in log‑10 scale),
with more or less the same rate ≃ 3.5%. The network size has negligible impact on the emerging dy‑
namics of average knowledge as well as on knowledge inequality. Selection entropy depends slightly
on network size (Figure 5c). On the contrary, centralization depends significantly on network size
(Figure 5d). For smaller networks, the centralization increase becomes stronger.

8. Discussion
The development of “new mathematical formalisms for the co‑evolutionary dynamics of

states and interactions” has been identified by Thurner, Hanel and Klimek as one of the
key directions of future research in the Theory of Complex Systems (Chapter 7 of [52]).
San Miguel, Eguíluz and others published on the co‑evolution of dynamical states and inter‑
actions, addressing the question of network formation [53–58]. In this context, we have
modeled and explored the co‑evolution of link weights and knowledge levels among in‑
telligent interacting agents. We extended the mathematical models, restricted to random
mindless interactions among the agents [13,14,18,20] taking place on a “frozen” (static)
network [12–18,23,24,27,28], in two ways:
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• The agents (human beings or intelligentmachines) are able tomakemindful decisions
for knowledge acquisition. The decisions of intelligent rational agents are realized
under bounded rationality [25,26]. If the bound of rationality, concerning the selec‑
tions of other agents for knowledge acquisition is lower, then the agent is considered
as more intelligent (Definition 2, Table 1).

• We formulated the co‑evolution of the linkweights and the knowledge levels at the lo‑
calmicroscopic level of “agent‑to‑agent” interaction. Themodel describes the “struc‑
tural plasticity” of the network as a “learning mechanism”, where weight updates
depend on the previous values of both weights and knowledge levels. As a result,
the co‑evolution is intrinsic/endogenous (Definition 4, Remark 3).
The goal of this work is to explore the impact of the following:

• The intelligence of the agents, modeled by the selection‑decision rule for knowledge
acquisition (Definition 2, Table 3) (CF7);

• The innovation rate of the agents (Assumption 3, Table 3) (CF3);
• The number of “top innovators” (Table 3);
• The network size (Table 3).

Our results are summarized in 3 key findings, presented also in Table 4: The network
centralization increases as the agents become more intelligent (Remark 6), as the innovation
rate increases (Remark 8), as the number of top innovators decreases (Remark 9) and as the
network size decreases (Remark 10). The selection entropy decreases as the agents become
more intelligent (Remark 5), as the innovation rate increases (Remark 8) and as the number
of top innovators decreases (Remark 9). Selection entropy does not depend significantly on
the network size (Remark 10). The average knowledge and the knowledge inequality grow
exponentially in time (Remarks 4, 7, 9, 10). The rate of exponential growth is increasing
as the innovation rate increases. The exponential growth of average knowledge has been
observed in several socio‑economic systems [59] and scientific knowledge [60]. However,
the analysis of exponential knowledge increase for individuals is beyond the scope of this
work. Moreover, we observe increasing small oscillations, for lower innovation rates (Re‑
mark 7). On the contrary, there is negligible dependence on the intelligence of the agents
(Remark 4), on the number of top innovators (Remark 9) and on the network size (Re‑
mark 10).

Table 4. Impact of parameters.

Parameter (Table 3)

Increase of
Intelligence

(CF7)

Increase of
Innovation

Rate
(CF3)

Decrease of
Number of

Top
Innovators

(CF3)

Decrease of
Network
Size

Impact
Assessment

Average
Knowledge

negligible
impact

(Figure 2a)

increase
(Figure 3a)

negligible
impact

(Figure 4a)

negligible
impact

(Figure 5a)

Knowledge
Inequality

negligible
impact

(Figure 2b)

increase
(Figure 3b)

negligible
impact

(Figure 4b)

negligible
impact

(Figure 5b)

Selection
Entropy

decrease
(Figure 2c)

decrease
(Figure 3c)

decrease
(Figure 4c)

negligible
impact

(Figure 5c)
Network

Centralization
increase

(Figure 2d)
increase

(Figure 3d)
increase

(Figure 4d)
increase

(Figure 5d)

9. Conclusions
Our work offers some insight on the dynamics of networked societies. The “Death of

Distance” [61], due to the World Wide Web, resulted in global interconnectedness. We are
interconnected through online social networks, platforms and communities (Facebook,
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LinkedIn, Instagram, Twitter, Airbnb, ResearchGate, TripAdvisor, Booking and YouTube).
We are influencing each other, directly or indirectly, intentionally or unintentionally,
on global scale. We share knowledge and we rank individuals, services or products.
This “ranking” is visible, for example, the Followers at Instagram or Twitter, the Endorse‑
ments at LinkedIn, the Likes at Facebook, the 5‑star experience at Airbnb or Booking or
TripAdvisor, the RG Score at ResearchGate, the Views and Likes at YouTube. Therefore, in‑
telligent decisionmakers (selecting agents) being aware of this ranking, decidewith higher
rationality, lowing the selection entropy. Intelligent selections are effectively a mecha‑
nism of “preferential attachment” (the newcomer is aware of the degree connectivity of all
other nodes and attaches to nodes with higher degree). This behavior increases the cen‑
tralization of the network society because more and more individuals tend to select the
“best option” (high‑ranked agents) and the link weights with the low‑ranked agents are
weakening. Of course, the correlation between the rank/popularity and the quality of the
“best option” is not always positive.

10. Future Work
Ourwork is a first step towards the exploration of the emergence of centralization due

to the intelligence of agents, communicating in a co‑evolving network. We see twomain di‑
rections for futurework, namely, (a) the dependence on the initial network structure (regu‑
lar, random, small‑world, scale‑free) and (b) the dependence on time‑dependent diagonal
weights 𝑤𝜅𝜅(𝑡) expressing the agents’ innovation capability. Concerning the dependence
on the diagonal weights, agents with low innovation capability initially, may eventually
develop high innovation capability, which is expected to have significant impact on the
emerging dynamics of knowledge inequality, selection entropy and network centraliza‑
tion. More specifically, high network centralization may collapse, due to the emergence
of “new” top innovators with high knowledge level. The knowledge of former top innova‑
tors becomes depreciated, while the knowledge from “new” top innovators becomesmore
and more appreciated, due to their higher innovation capability. A real‑world paradigm
is the mobile phone industry. From 1990s to late 2000s, Nokia andMotorola were both top
innovators in the mobile phone industry, with pioneer technology for that time period.
However, things changed after 2010, when Samsung and Apple became the “new” top
innovators, introducing smartphones like “Samsung Galaxy” and “iPhone”.
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