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Abstract: New weak notions of positive dependence between the components X and Y of a random
pair (X, Y) have been considered in recent papers that deal with the effects of dependence on
conditional residual lifetimes and conditional inactivity times. The purpose of this paper is to provide
a structured framework for the definition and description of these notions, and other new ones,
and to describe their mutual relationships. An exhaustive review of some well-know notions of
dependence, with a complete description of the equivalent definitions and reciprocal relationships,
some of them expressed in terms of the properties of the copula or survival copula of (X, Y), is also
provided.

Keywords: dependence notions; stochastic orders; copulas; total positivity

1. Introduction

In the past few decades, a number of different concepts and notions of dependence
between the components X and Y of a random pair (X, Y) have been defined and applied
in a variety of fields like reliability theory or actuarial sciences. Since the main motivation
for these notions is in the understanding of the effects of the dependence between X and
Y on the reliability of one of them given the behavior of the other, most of these notions
have been described and defined by using classical stochastic comparisons, comparing
in some stochastic sense the distribution of one variable under different conditions for
the other. For example, a well-known notion is the stochastically increasing property:
given (X, Y), the variable X is said to be stochastically increasing in Y if, and only if,
Pr(X > x|Y = y) increases in y for all fixed x (respectively in the corresponding supports
of Y and X), or equivalently, if, and only if, (X|Y = y1) ≤ST (X|Y = y2) for all y1 ≤ y2,
where ≤ST denotes the usual stochastic order (whose definition is recalled next). Similarly,
other notions have been defined (and studied in detail) by replacing the usual stochastic
order with other common stochastic comparisons and considering other conditional events,
such as, for example, {Y > y}.

The purpose of this paper is twofold: on the one hand, it is our intention to provide
a complete review of the main notions introduced so far, clearly describing equivalent
definitions and reciprocal relationships; on the other hand, it is to enlarge the set of
dependence notions with two properties recently considered in [1,2] and with other new
ones, all defined as above, but considering stochastic orders for which the corresponding
notions have not been characterized in the previous literature. The first point is motivated
by the fact that characterizations of the previously defined notions can be found in many
different articles and books, where the equivalent definitions and mutual connections are
separately and partially analyzed, so that it is difficult to find them in a few exhaustive
statements. For the second point, the aim is also to describe in an systematic manner some
notions introduced in recent literature and to define a unified framework for dependence
notions and their mutual relationships.
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The paper also contains a result of general interest in the context of total positivity
theory, for which we have not found the statement in the literature. This result, stated and
proven in Section 2, deals with the preservation properties of total positivity and is used to
provide sufficient conditions for the new notions of dependence.

The paper is structured as follows. The definitions of the stochastic orders used
to describe the old and new dependence properties are recalled in Section 2, together
with other useful properties and characterizations. Section 3 contains the survey on the
notions introduced so far in the literature; all of them imply the Positively Quadrant
Dependent (PQD) property, defined later, which is a necessary condition for a property
of a vector (X, Y) to be considered a dependence property according to the classical
definition described in [3]. The new dependence notions, which are called here “weak
dependence notions” since they imply the non-negativity of the linear correlation index,
but not the PQD property, are described in Sections 4 and 5. Finally, Section 6 contains
counterexamples showing that equivalences among some of these notions are not satisfied.

Throughout the paper, we will consider bivariate vectors (X, Y) having an absolutely
continuous joint distribution, unless otherwise stated, and the supports of X and Y will
be denoted as SX and SY. For any random variable or random vector X and an event A,
the notation (X|A) describes the random variable whose distribution is the conditional
distribution of X given A (tacitly assuming that it exists). The terms “increasing” and
“decreasing” are used in place of “nondecreasing” and “nonincreasing”, respectively. Fur-
thermore, for a function h(x, y) : R2 → R, the notations ∂1h(x, y) and ∂2h(x, y) are used for
the partial derivatives with respect to the first or the second component, respectively, while
∂2

12h(x, y) is used for the mixed second partial derivative.

2. Preliminaries

First, we briefly recall the definitions of the stochastic orders that will be used through-
out this paper. Most of them are mainly used to compare random lifetimes or inactivity
times. To this aim, let X and Y be two absolutely continuous random variables having
supports SX and SY, distribution functions FX and FY, reliability (survival) functions
F̄X = 1− FX and F̄Y = 1− FY, and density functions fX and fY, respectively. Furthermore,
for t ∈ R, let Xt = (X− t|X > t) and Yt = (Y− t|Y > t) be the corresponding residual life-
times (RL), and let tX = (t− X|X < t) and tY = (t−Y|Y < t) denote the corresponding
inactivity times (IT). Then, we say that X is smaller than Y:

• in the stochastic order (denoted by X ≤ST Y) if F̄X ≤ F̄Y in R;
• in the likelihood ratio order (denoted by X ≤LR Y) if the ratio fY/ fX is increasing in
SX ∪ SY;

• in the hazard rate order (denoted by X ≤HR Y) if the ratio F̄Y/F̄X is increasing in R;
• in the reversed hazard rate order (denoted by X ≤RHR Y) if the ratio FY/FX is increas-

ing in R;
• in the mean residual life order (denoted by X ≤MRL Y) if E(Xt) ≤ E(Yt) for all t for

which the expectations exist;
• in the mean inactivity time order (denoted by X ≤MIT Y) if E(tX) ≥ E(tY) for all t for

which the expectations exist;
• in the increasing convex order (denoted by X ≤ICX Y) if E(φ(X)) ≤ E(φ(Y)) for all

increasing and convex functions φ for which the expectations exist;
• in the increasing concave order (denoted by X ≤ICV Y) if E(φ(X)) ≤ E(φ(Y)) for all

increasing and concave functions φ for which the expectations exist.

We address the reader to [4] for a detailed description of these stochastic orders
(except for the MIT order, for which we address the reader to [5]) and to [6] or [7] for a list
of examples of applications in reliability theory and in actuarial sciences. Among these
stochastic orders, there exist the well-known relationships shown in Table 1. The proof of
all these relationships may be found in [4], except for those involving the MIT order, which
can be found in [5].
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Table 1. Relationships among the main stochastic orders.

X ≤LR Y ⇒ X ≤HR Y ⇒ X ≤MRL Y
⇓ ⇓ ⇓

X ≤RHR Y ⇒ X ≤ST Y ⇒ X ≤ICX Y
⇓ ⇓ ⇓

X ≤MIT Y ⇒ X ≤ICV Y ⇒ E(X) ≤ E(Y)

We recall here some immediate properties and equivalent conditions of these stochastic
orders. The proofs of the following statements, unless stated, can be found in [4] or are
straightforward.

Proposition 1. The following conditions are equivalent:

(i) X ≤LR Y;
(ii) Xt ≤LR Yt for all t;
(iii) Xt ≤RHR Yt for all t;
(iv) (X|s < X < t) ≤ST (Y|s < Y < t) for all s < t.

Note that the third and the fourth conditions in the proposition above can be used to
define the order also for variables that are not absolutely continuous.

Proposition 2. The following conditions are equivalent:

(i) X ≤HR Y;
(ii) Xt ≤HR Yt for all t;
(iii) Xt ≤ST Yt for all t.

Proposition 3. The following conditions are equivalent:

(i) X ≤MRL Y;
(ii) Xt ≤MRL Yt for all t;
(iii) Xt ≤ICX Yt for all t.

The proofs of the propositions above may be found in [4] or easily follow from
statements there. For example, to prove the last one, we note that if mX(t) = E(Xt) =
E(X − t|X > t) is the MRL of X, then the MRL of Xt is mXt(x) = mX(x + t). Therefore,
we get (i)⇒ (ii). Furthermore, (ii)⇒ (iii) holds because the MRL order implies the ICX
order. Finally, (iii)⇒ (i) holds because the ICX order implies the order in expectations.

Similar results can be stated for inactivity times. The proofs of the following results,
again, can be found in [4] or are straightforward.

Proposition 4. The following conditions are equivalent:

(i) X ≤RHR Y;
(ii) tX ≥HR tY for all t;
(iii) tX ≥ST tY for all t.

Proposition 5. The following conditions are equivalent:

(i) X ≤LR Y;
(ii) tX ≥LR tY for all t;
(iii) tX ≥RHR tY for all t;

Finally, we include the equivalences for the MIT order.
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Proposition 6. The following conditions are equivalent:

(i) X ≤MIT Y;
(ii) tX ≥MRL tY for all t;
(iii) tX ≥ICX tY for all t.

The proof of the equivalence between Conditions (i) and (iii) in the previous propo-
sition may be found in [8], while the equivalence with (ii) can be proven in a similar
manner.

For the proof of some of the results stated in the next sections, we will use a few
preliminary results whose proofs are given here. These results, for which we have not
found the statements in the literature, are of general interest in the context of total positivity
theory, regardless of their applications in the following sections.

For them, we recall the notion of total positivity of order two (see, e.g., [9]).

Definition 1. A bivariate function l : R2 7→ R+ is said to be totally positive of order two (TP2) if:

l(x1, y1)l(x2, y2) ≥ l(x1, y2)l(x2, y1), for all x1 ≤ x2, y1 ≤ y2.

We also recall the following useful property, the proof of which is given in Lemma
7.1(a) in Chapter 4 of [6] (see also the remark after the lemma).

Lemma 1. Let W be a Lebesgue–Stieltjes measure, not necessarily positive, defined on the interval
(a, b), and let φ be a non-negative function defined on (a, b). If

∫ b
t dW(x) ≥ 0 for all t ∈ (a, b)

and φ is increasing, then
∫ b

t φ(x)dW(x) ≥ 0 for all t ∈ (a, b).

We can now state and prove the first one of the preliminary results.

Theorem 1. Let f : R2 7→ R+. If h(x, y) =
∫ b

x f (s, y)ds is TP2 in (x, y), with x ∈ (a, b) ⊆
R, then:

H(x, y) =
∫ b

x
f (s, y)φ(s)ds

is also TP2 in (x, y) for all increasing and non-negative real functions φ.

Proof. We assume that h(x, y) is TP2 in (x, y), which means that:∫ b
x f (s, y1)ds∫ b
x f (s, y2)ds

decreases in x, for y1 ≤ y2. (1)

Now observe that (1) holds if, and only if:

f (x, y1)

f (x, y2)
≥
∫ b

x f (s, y1)ds∫ b
x f (s, y2)ds

for y1 ≤ y2. (2)

From (1) and (2), we can rewrite the TP2 property of h(x, y) as:

f (x, y1)

f (x, y2)
≥
∫ b

t f (s, y1)ds∫ b
t f (s, y2)ds

, for a < x ≤ t < b, y1 ≤ y2.

Now, given y1 ≤ y2, this is the same as:

∫ b

t
dWx(s) ≥ 0, for all a < x ≤ t < b, (3)
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where:
dWx(s) = [ f (s, y2) f (x, y1)− f (s, y1) f (x, y2)]ds. (4)

Now, consider the function:

Φ(u) =
∫ b

u
I[t,∞)(s)dWx(s), u ∈ (a, b),

where:

I[t,∞)(s) =
{

1, s ≥ t
0, s < t,

t ∈ (a, b).

Then, by noting that:

Φ(u) =


∫ b

u dWx(s), u > t∫ b
t dWx(s), u ≤ t,

we see that (3) is equivalent to:

∫ b

u
I[t,∞)(s)dWx(s) ≥ 0, for all u, for all a < x ≤ t < b.

Since φ is increasing and non-negative, by using Lemma 1, we have:

∫ b

u
I[t,∞)(s)φ(s)dWx(s) ≥ 0, for all u, for all a < x ≤ t < b.

By repeating the argument in the opposite direction, we see that the last inequality is
the same as: ∫ b

t
φ(s)dWx(s) ≥ 0, for all a < x ≤ t < b.

Therefore, we have proven that (1) implies:

∫ b

t
[ f (s, y2) f (x, y1)− f (s, y1) f (x, y2)]φ(s)ds ≥ 0, y1 ≤ y2, a < x ≤ t < b.

Rewriting this inequality as:

f (x, y1)

f (x, y2)
≥
∫ b

t f (s, y1)φ(s)ds∫ b
t f (s, y2)φ(s)ds

, for x ≤ t, y1 ≤ y2

and taking x = t, we see that:∫ b
x f (s, y1)φ(s)ds∫ b
x f (s, y2)φ(s)ds

decreases in x, for y1 ≤ y2.

This means that
∫ ∞

x f (s, y)φ(s)ds is TP2 in (x, y).

The following is an immediate consequence of Theorem 1.

Corollary 1. Let f : R2 7→ R+. If h(x, y) =
∫ b

x f (s, y)ds is TP2 in (x, y), with x ∈ (a, b), then:

H(x, y) =
∫ ψ−1(b)

x
f (ψ(s), y)ds

is also TP2 in (x, y), with x ∈ (ψ−1(a), ψ−1(b)), for all strictly increasing and concave real
functions ψ.
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Proof. Since h(x, y) is TP2 in (x, y) and ψ is increasing, it follows from Theorem 1.1 of [9],
p. 99, that h(ψ(x), y) is TP2 in (x, y). This is equivalent to stating that:∫ b

ψ(x) f (s, y1)ds∫ b
ψ(x) f (s, y2)ds

decreases in x, for y1 ≤ y2,

which is the same as:∫ ψ−1(b)
x f (ψ(s), y1)ψ

′(s)ds∫ ψ−1(b)
x f (ψ(s), y2)ψ′(s)ds

decreases in x, for y1 ≤ y2.

Equivalently, we can say that:

∫ ψ−1(b)

x
f (ψ(s), y)ψ′(s)ds (5)

is TP2 in (x, y). Since ψ is strictly increasing and concave, the result follows from (5) by
applying Theorem 1 with φ(s) = 1

ψ′(s) .

Using the same procedure as above, but applying Lemma 7.1(b) in Chapter 4 of [6]
instead of Lemma 7.1(a), one can also prove the following statements.

Theorem 2. Let f : R2 7→ R+. If h(x, y) =
∫ x

a f (s, y)ds is TP2 in (x, y), with x ∈ (a, b) ⊆
R, then:

H(x, y) =
∫ x

a
f (s, y)φ(s)ds

is also TP2 in (x, y) for all non-negative and decreasing real functions φ.

Corollary 2. Let f : R2 7→ R+. If h(x, y) =
∫ x

a f (s, y)ds is TP2 in (x, y), with x ∈ (a, b) ⊆
R, then:

H(x, y) =
∫ x

ψ−1(a)
f (ψ(s), y)ds

is also TP2 in (x, y), with x ∈ (ψ−1(a), ψ−1(b)), for all strictly increasing and convex real
functions ψ.

3. Strong Dependence Notions

Starting from the seminal paper by Kimeldorf and Sampson [3], where a unified
framework to deal with dependence concepts was proposed, many alternative notions
of dependence (either positive or negative) have been investigated and applied in the
literature with the intent of mathematically describing the different properties and aspects
of this intuitive concept. According to [3], a bivariate property can be considered as a
positive dependence notion if it satisfies a number of conditions, the first of which is the
PQD property, whose definition and relevance in this context is recalled later.

Since all the monotone dependence properties based on the level of concordance
between the components of a random vector are entirely described by its copula, whenever
it is unique, one can rewrite the conditions described in [3] in terms of families of copulas,
without taking care of the marginal distributions. See, e.g., [10] or [11] for the relationships
between copulas and positive dependence notions or indexes. For this reason, we briefly
recall here the definition of the copula and the survival copula of a random vector (X, Y).

Given a random vector (X, Y) with joint distribution function F and marginal distri-
butions FX and FY, the function C : [0, 1]2 → [0, 1] is called copula of the vector (X, Y) if it
is such that, for all (x, y) ∈ R2,

F(x, y) = C(FX(x), FY(y)).
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In this case, it also holds, if FX and FY are continuous, that:

C(u, v) = F(F−1
X (u), F−1

Y (v)),

for all u, v ∈ [0, 1], where F−1
X denotes the quasi-inverse of FX (and similarly for F−1

Y ).
Actually, the copula of a vector (X, Y), which is unique whenever FX and FY are continuous,
is the joint distribution function of a vector having uniformly distributed margins on
[0, 1] ⊂ R, which entirely describes the dependence between the components of the vector.
Moreover, since in some applicative fields, like reliability theory, the dependence among
components of a vector is analyzed through the survival copula instead of through the
copula, then we recall its definition as well: given (X, Y), and denoting F̄, F̄X , and F̄Y as its
joint survival function and the two marginal survival functions, the survival copula Ĉ is
defined as:

Ĉ(u, v) = F̄(F̄−1
X (u), F̄−1

Y (v)) = u + v− 1 + C(1− u, 1− v)

for all u, v ∈ [0, 1]. If Ĉ exists, then one also has:

F̄(x, y) = Ĉ(F̄X(x), F̄Y(y))

for all x and y. For the basic properties of copulas and survival copulas, we refer the reader
to [11,12].

The definitions of the dependence properties considered throughout the paper, and pre-
viously defined in the literature, are recalled here.

Definition 2. Given a vector (X, Y), it is said to be:

• PQD (Positively Quadrant Dependent) iff X ≤ST (X|Y > t) for all t (see, e.g., [11], p. 187).
• NQD (Negatively Quadrant Dependent) iff X ≥ST (X|Y > t) for all t (see, e.g., [11], p. 187).
• RTI(X|Y) (Right Tail Increasing) iff (X|Y > t) is ST-increasing in t (see, e.g., [11], p. 191).
• RTD(X|Y) (Right Tail Decreasing) iff (X|Y > t) is ST-decreasing in t (see, e.g., [10], p. 22).
• LTD(X|Y) (Left Tail Decreasing) iff (X|Y ≤ t) is ST-increasing in t (see, e.g., [11], p. 191).
• LTI(X|Y) (Left Tail Increasing) iff (X|Y ≤ t) is ST-decreasing in t (see, e.g., [10], p. 22).
• SI(X|Y) (Stochastically Increasing) iff (X|Y = t) is ST-increasing in t ∈ SY (see, e.g., [11],

p. 196).
• SD(X|Y) (Stochastically Decreasing) iff (X|Y = t) is ST-decreasing in t ∈ SY (see, e.g., [11], p.

196).
• RCSI (Right Corner Set Increasing) iff Pr(X > x, Y > y|X > s, Y > t) is increasing in s

and t for all (x, y) ∈ R2 (see [11], p. 198) or, equivalently, iff (X|Y > t) is HR-increasing in
t (see [13], p. 166).

• RCSD (Right Corner Set Decreasing) iff Pr(X > x, Y > y|X > s, Y > t) is decreasing in s
and t for all (x, y) ∈ R2 (see [11], p. 198) or, equivalently, iff (X|Y > t) is HR-decreasing in
t (see [13], p. 166).

• LCSD (Left Corner Set Decreasing) iff Pr(X ≤ x, Y ≤ y|X ≤ s, Y ≤ t) is decreasing in s and t
for all (x, y) ∈ R2 (see [11], p. 198) or, equivalently, iff (X|Y ≤ t) is RHR-increasing in t.

• LCSI (Left Corner Set Increasing) iff Pr(X ≤ x, Y ≤ y|X ≤ s, Y ≤ t) is increasing in s and
t for all (x, y) ∈ R2 (see [11], p. 198) or, equivalently, iff (X|Y ≤ t) is RHR-decreasing in t.

• SIRL(X|Y) (Stochastically Increasing in Residual Life), defined in [14], iff (X|Y = t) is
HR-increasing in t ∈ SY.

• SDRL(X|Y) (Stochastically Decreasing in Residual Life), defined in [14], iff (X|Y = t) is
HR-decreasing in t ∈ SY.

• PRLD (Positive Likelihood Ratio Dependent) iff its joint density function is TP2 (see [11], p.
200, where it is denoted as PLR(X, Y)) or, equivalently, iff (X|Y = t) is LR-increasing in
t ∈ SY (see [14]).

• NRLD (Negative Likelihood Ratio Dependent) iff its joint density function is RR2 (see [11],
p. 200, and [9] for RR2 notion) or, equivalently, iff (X|Y = t) is LR-decreasing in t ∈ SY.
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Note that some of these notions, like the PQD, are “symmetric”, in the sense that they
describe both the properties of X given Y and the properties of Y given X, while other
notions, like RTI(X|Y), describe only the properties of X given Y, while the opposite no-
tions (e.g., RTI(Y|X)) describe the properties of Y given X. For these cases, the symmetric
notions can be defined similarly and will be denoted as P(Y|X), where P is the specific
property.

As pointed out before, for all the above-mentioned notions, there exist equivalent
definitions given in terms of the survival copula Ĉ (or connecting copula C) of the vector
(X, Y). These alternative definitions, proven in [11], [13], or [14], will be pointed out in
the following statements, which also describe more interesting equivalences. Here, and
throughout the rest of the paper, the notations Xt,s and Yt,s are used to describe double
conditioning, i.e., Xt,s = (X− t|X > t, Y > s) and Yt,s = (Y− s|X > t, Y > s).

Proposition 7. For continuous F̄X and F̄Y, the following conditions are equivalent:

(i) X ≤HR (X|Y > s) for all s ∈ R and all F̄X , F̄Y;
(ii) Xt ≤HR Xt,s for all (t, s) ∈ R2 and all F̄X , F̄Y;
(iii) Xt ≤ST Xt,s for all (t, s) ∈ R2 and all F̄X , F̄Y;
(iv) Ĉ(u, v)/u is decreasing in u for all v ∈ [0, 1];
(v) RTI(Y|X).

The equivalences between the first three conditions can be obtained from the equiv-
alences given in the preceding section. The equivalences between (i) and (iv) can be
obtained both from Proposition 3.1 in [2] or from Proposition 3.3 (iii) in [13]. The equiva-
lence between (iv) and (v) can be found in [11] (Theorem 5.2.5). It is interesting to observe
that, even if RTI(Y|X) refers to a property describing the behavior of the law of Y given X,
Conditions (i), (ii), and (iii) refer to the behavior of X given Y. A discussion of and the
formal motivation for this fact were clearly provided in [14].

Note that a similar proposition could be stated just for a fixed s. Note that if (i) holds
for a fixed s > 0 and all F̄X, F̄Y, then (iv) holds for all u = F̄X(t) > 0 and v = F̄Y(s) > 0;
by changing F̄Y, we cover the interval (0, 1). However, if we fix F̄X and F̄Y, then the
equivalence is not true when we also fix s (the RTI(Y|X) property is no longer satisfied).
In this case, (v) does not hold, but one could write (iv) for a fixed value v = F̄Y(s).

The following statement deals with the SI notion.

Proposition 8. The following conditions are equivalent:

(i) X ≤LR (X|Y > s) for all s ∈ R and all F̄X , F̄Y;
(ii) Xt ≤LR Xt,s for all (t, s) ∈ R2 and all F̄X , F̄Y;
(iii) Xt ≤RHR Xt,s for all (t, s) ∈ R2 and all F̄X , F̄Y;
(iv) Ĉ(u, v) is concave in u (or ∂1Ĉ(u, v) is decreasing in u) for all v ∈ [0, 1];
(v) SI(Y|X).

The equivalences between the first three conditions can be obtained from the equiv-
alences given in the preceding section. The equivalences with (iv) can be obtained both
from Proposition 3.2 in [2] or from Proposition 3.3 (v), in [13]. Again, it is interesting to
observe that SI(Y|X) refers to a property describing the behavior of the law of Y given X,
while Conditions (i), (ii), and (iii) refer to the behavior of X given Y (see [14]).

The following statement describes equivalent definitions for the RCSI notion.

Proposition 9. The following conditions are equivalent:

(i) (X|Y > s1) ≤HR (X|Y > s2) for all s1 ≤ s2 and all F̄X , F̄Y;
(ii) (Y|X > t1) ≤HR (Y|X > t2) for all t1 ≤ t2 and all F̄X , F̄Y;
(iii) Xt,s1 ≤HR Xt,s2 for all t, all s1 ≤ s2 and all F̄X , F̄Y;
(iv) Xt,s1 ≤ST Xt,s2 for all t, all s1 ≤ s2 and all F̄X , F̄Y;
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(v) Yt1,s ≤HR Yt2,s for all s, all t1 ≤ t2 and all F̄X , F̄Y;
(vi) Yt1,s ≤ST Yt2,s for all s, all t1 ≤ t2 and all F̄X , F̄Y;
(vii) Ĉ(u, v) is TP2 in (u, v) ∈ [0, 1]2;
(viii) (X, Y) is RCSI.

The proofs of the equivalences in the above proposition can be found in [1,14] or [13].
The preceding propositions can be completed with the following result (extracted

from Proposition 3.3 in [13]) that does not have an equivalent result based on residual
lifetimes. For the equivalence between Conditions (iv) and (v), see [15].

Proposition 10. The following conditions are equivalent:

(i) X ≤ST (X|Y > s) for all s and all F̄X , F̄Y;
(ii) Y ≤ST (Y|X > t) for all t and all F̄X , F̄Y;
(iii) Ĉ(u, v) ≥ uv for all u, v ∈ [0, 1];
(iv) Cov(τ(X), φ(Y)) ≥ 0 for all increasing real functions τ and φ for which the covariance exists;
(v) (X, Y) is PQD.

The following two propositions hold as well.

Proposition 11. The following conditions are equivalent:

(i) (X|Y > s1) ≤LR (X|Y > s2) for all s1 < s2 and all F̄X , F̄Y;
(ii) (Xt|Y > s1) ≤LR (Xt|Y > s2) for all t, s1 < s2, s1, s2 and all F̄X , F̄Y;
(iii) (Xt|Y > s1) ≤RHR (Xt|Y > s1) for all t, s1 < s2 and all F̄X , F̄Y;
(iv) ∂1Ĉ(u, v) is TP2 in (u, v) ∈ [0, 1]2;
(v) SIRL(Y|X).

The proof of equivalence among (i), (iv), and (v) can be found in [13] or [14].
The proof of equivalence among (ii), (iii), and (v) can be found in [1]. Once more, it
is interesting to observe that SIRL(Y|X) refers to a property describing the behavior of the
law of Y given X, while Conditions (i), (ii), and (iii) refer to the behavior of X given Y
(see [14]).

Proposition 12. The following conditions are equivalent:

(i) (Y|X = t1) ≤LR (Y|X = t2) for all t1 < t2, t1, t2 ∈ SX and all F̄X , F̄Y;
(ii) (X|Y = s1) ≤LR (X|Y = s2) for all s1 < s2, s1, s2 ∈ SY and all F̄X , F̄Y;
(iii) (Xt|Y = s1) ≤LR (Xt|Y = s2) for all t, s1 < s2, s1, s2 ∈ SY and all F̄X , F̄Y;
(iv) (Xt|Y = s1) ≤RHR (Xt|Y = s2) for all t, s1 < s2, s1, s2 ∈ SY and all F̄X , F̄Y;
(v) (Ys|X = t1) ≤LR (Ys|X = t2) for all s, t1 < t2, t1, t2 ∈ SX and all F̄X , F̄Y;
(vi) (Ys|X = t1) ≤RHR (Ys|X = t2) for all s, t1 < t2, t1, t2 ∈ SX and all F̄X , F̄Y;
(vii) ∂2

1,2Ĉ(u, v) is TP2 in (u, v) ∈ [0, 1]2;
(viii) ∂2

1,2C(u, v) is TP2 in (u, v) ∈ [0, 1]2;
(ix) (X, Y) is PLRD.

The proof of equivalence between (vii) and (viii) can be found in [11]. The proof of
equivalence among (i), (ii), and (viii) can be found in [13] or [14]. The proof of equivalence
among (iii), (iv), (v), and (vi) follows from Proposition 2.1.

In order to synthesize all these properties with a uniform notation and to introduce
similarly defined new properties, the definitions that follow were proposed in [13,14]. The
first one of them deals with the SI notion.
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Definition 3. We say that (X, Y) is stochastically increasing (decreasing) in the order ORD,
denoted SIORD(X|Y) (SDORD(X|Y)), if:

(X|Y = s1) ≤ORD (X|Y = s2) (≥ORD)

holds for all s1 < s2, with s1, s2 ∈ SY, for a given stochastic order ORD.

The classes for (Y|X) are defined in a similar manner. With this definition, the class
SI(X|Y) can also be written as SIST(X|Y); the class SIRL(X|Y) can also be written as
SIHR(X|Y); and the condition (i) in Proposition 12 as SILR(Y|X). Note that in this last case,
SILR(Y|X) is equivalent to SILR(X|Y), and so, we can just write SILR.

One can do the same with the RTI and LTD classes by proposing the following
definitions (see [14]).

Definition 4. We say that (X, Y) is right tail increasing (decreasing) in the order ORD, denoted
RTIORD(X|Y) (RTDORD(X|Y)), if:

(X|Y > s1) ≤ORD (X|Y > s2) (≥ORD)

holds for all s1 < s2 for a given stochastic order ORD.

Definition 5. We say that (X, Y) is left tail decreasing (increasing) in the order ORD, denoted
LTDORD(X|Y) (LTIORD(X|Y)), if:

(X|Y ≤ s1) ≤ORD (X|Y ≤ s2) (≥ORD)

holds for all s1 < s2 for a given stochastic order ORD.

The classes for (Y|X) are defined in a similar manner. With this definition, the class
RTI(X|Y) can also be written as RTIST(X|Y); the conditions (i) and (ii) in Proposition 9
can also be written as RTIHR(X|Y) and RTIHR(Y|X); and the condition (i) in Proposition 11
as RTILR(X|Y).

We can add more notions by considering the following definitions.

Definition 6. We say that (X, Y) is right tail increasing (decreasing) at zero in the order ORD,
denoted RTI0

ORD(X|Y) (RTD0
ORD(X|Y)), if:

X ≤ORD (X|Y > s) (≥ORD)

holds for all s for a given stochastic order ORD.

Definition 7. We say that (X, Y) is left tail decreasing (increasing) at infinity in the order ORD,
denoted LTD∞

ORD(X|Y) (LTI∞
ORD(X|Y)), if:

X ≥ORD (X|Y ≤ s) (≤ORD)

holds for all s for a given stochastic order ORD.

With these definitions, PQD can also be written as RTI0
ST(Y|X) or RTI0

ST(X|Y),
but also as LTD∞

ST(Y|X) or LTD∞
ST(X|Y). Analogously, RTI(Y|X) and LTD(Y|X) can

be written as RTI0
HR(X|Y) and LTD∞

RHR(X|Y), respectively. Furthermore, SI(Y|X) can be
written as RTI0

LR(X|Y) or as LTD∞
LR(X|Y). The proofs of these equivalences can be found

in [2,13]. Note also that some of these notions are actually equivalent, like, e.g., RTI0
LR(Y|X)

and SIST(X|Y) or RTI0
HR(Y|X) and RTIST(X|Y) (see [14] for details).

The preceding propositions can be connected by using the relationships among the
stochastic orders shown in Table 1. They are summarized in Table 2. For example, to
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prove SIRL(X|Y) ⇒ RCSI(X, Y), we just note that RCSI(X, Y) = RTIHR(X|Y), that
SIRL(X|Y) = RTILR(X|Y), and that the LR order implies the HR order. These relationships
prove that they are positive dependence properties, since all of them imply the PQD
property. Analogously, the corresponding negative dependence properties imply the NQD
property. Some of these relationships were given in [13], p. 166, and in [14]. Connections
with the ordering properties of coherent systems and extremes values were given in [16,17].

Table 2. Relationships among positive dependence properties.

PQD(X, Y) ⇐ RTI(Y|X) ⇐ SI(Y|X)
⇑ ⇑ ⇑

RTI(X|Y) ⇐ RCSI(X, Y) ⇐ SIRL(Y|X)
⇑ ⇑ ⇑

SI(X|Y) ⇐ SIRL(X|Y) ⇐ PLRD(X, Y)

The relationships for the reversed properties (i.e., based on cumulative distributions
rather than survival functions) are given in Table 3. For them, observe, e.g., that SIRHR(Y|X)
iff ∂1C(u, v) is TP2 and that SIRHR(X|Y) iff ∂2C(u, v) is TP2 (see [13], where more equiva-
lences were also provided). More equivalences can be seen in [13]. Note that two of the
notions described in this table (SIRHR(Y|X) and SIRHR(X|Y)) were previously considered
in [13].

Table 3. Relationships among reversed positive dependence properties.

SI(Y|X) ⇒ LTD(Y|X) ⇒ PQD(X, Y)
⇑ ⇑ ⇑

SIRHR(Y|X) ⇒ LCSD(X, Y) ⇒ LTD(X|Y)
⇑ ⇑ ⇑

PLRD(X, Y) ⇒ SIRHR(X|Y) ⇒ SI(X|Y)

Negative dependence properties can be considered as well. For them, one has to
consider the RTD and LTI properties, obtaining relationships similar to those described in
Tables 2 and 3.

4. Weak Dependence Notions

In this section, new dependence notions are introduced and discussed. These notions,
which are defined as those satisfying RTIORD(X|Y) and RTI0

ORD(X|Y) where ORD is one of
the orders ICX, or MRL, or simply in Expectation (E), are “weak” in the sense that they do
not imply the PQD property, which is a necessary condition for a property to be considered
a “dependence notion” according to the classical definition given in [3]. However, they
imply the non-negativity of the linear correlation coefficient rX,Y, as mentioned after
Proposition 15, and this is the reason to consider them as “weak dependence notions”. Note
that some of these notions have been already considered and applied in the literature; this
is the case, for example, of RTI0

ICX(X|Y), which was named positive stop-loss dependence
in [7].

For RTI0
ICX(X|Y), we have the following properties.

Proposition 13. Let (X, Y) be a random vector with a continuous marginal distribution functions
FX and FY. Then, the following conditions are equivalent:

(i) X ≤ICX (X|Y > y) for all y ∈ R (i.e., RTI0
ICX(X|Y));

(ii) The survival copula Ĉ satisfies:∫ z

0
[Ĉ(u, v)− uv] dF̄−1

X (u) ≤ 0, ∀z ∈ [0, 1], ∀v ∈ [0, 1]. (6)
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Proof. It is clear that X ≤ICX (X|Y > y) for all y, if, and only if,∫ ∞

t
Pr(X > x)dx ≤

∫ ∞

t
Pr(X > x|Y > y)dx, ∀t, y ∈ R.

This is equivalent to:∫ ∞

t
[Ĉ(F̄X(x), F̄Y(y))− F̄X(x)F̄Y(y)]dx ≥ 0, ∀t, y ∈ R

or ∫ F̄X(t)

0
[Ĉ(u, v)− uv] dF̄−1

X (u) ≤ 0, ∀t ∈ R, v ∈ [0, 1].

Since FX is continuous, this is the same as:∫ z

0
[Ĉ(u, v)− uv] dF̄−1

X (u) ≤ 0, ∀z ∈ [0, 1], v ∈ [0, 1]. (7)

Corollary 3. Under the above assumptions, if F̄X is convex and:∫ z

0
[Ĉ(u, v)− uv] du ≥ 0, ∀z ∈ [0, 1], ∀v ∈ [0, 1], (8)

then X ≤ICX (X|Y > y) for all y ∈ R and all F̄Y.

Proof. Since F̄X is decreasing and convex, then F̄−1
X (u) is decreasing and convex and

−F̄−1
X (u) is increasing and concave. Then, by applying Lemma 7.1(b), of [6], to equation (8)

above, we obtain:∫ z

0
[Ĉ(u, v)− uv] d

(
−F−1

X (u)
)
≥ 0, ∀z ∈ [0, 1], ∀v ∈ [0, 1], (9)

which is the same as (7).

In particular, we have that the PQD property implies both RTI0
ICX(X|Y) for all F̄Y and

all convex F̄X and RTI0
ICX(Y|X) for all F̄X and all convex F̄Y. Note also that if RTI0

ICX(X|Y)
holds for a continuous survival function F̄Y, then it holds for all continuous survival
functions F̄Y (since (6) holds for any v = F̄Y(y) and all y).

For RTI0
MRL(X|Y), we have the following properties.

Proposition 14. Let (X, Y) be a random vector with continuous marginal distribution functions
FX and FY. Then, the following conditions are equivalent:

(i) X ≤MRL (X|Y > y) for all y ∈ R (i.e., RTI0
MRL(X|Y));

(ii) Xt ≤MRL Xt,s for all (t, s) ∈ R2;
(iii) Xt ≤ICX Xt,s for all (t, s) ∈ R2;
(iv) The survival copula Ĉ satisfies:∫ z

0
[zĈ(u, v)− uĈ(z, v)) dF̄−1

X (u) ≤ 0 ∀z, v ∈ [0, 1]. (10)

Proof. The equivalence between the first three items follows from Proposition 3. For the
equivalence with (iv), observe that X ≤MRL (X|Y > y) for all y ∈ SY if, and only if,∫ ∞

t F̄(x, 0)dx∫ ∞
t F̄(x, y)dx/F̄(0, y)

decreases in t ∀y,
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i.e., if, and only if, ∫ ∞
t Ĉ(F̄X(x), 1)dx∫ ∞
t Ĉ(F̄X(x), v)dx

decreases in t ∀v ∈ [0, 1].

This is equivalent to:

−Ĉ(F̄X(t), 1)
∫ ∞

t
Ĉ(F̄X(x), v)dx + Ĉ(F̄X(t), v)

∫ ∞

t
Ĉ(F̄X(x), 1)dx ≤ 0

for all v ∈ [0, 1] and t. The latter can be written as:∫ ∞

t
[Ĉ(F̄X(x), v)F̄X(t)− Ĉ(F̄X(t), v)F̄X(x)]dx ≥ 0, ∀v ∈ [0, 1], ∀t,

which is the same as:∫ 0

z
[zĈ(u, v)− uĈ(z, v)]dF̄−1

X (u) ≥ 0 ∀v, z ∈ [0, 1],

i.e., (10).

Corollary 4. Under the above assumptions, if F̄X is strictly monotone and convex and:∫ z
0 Ĉ(u, v)du∫ z
0 Ĉ(u, 1)du

is decreasing in z for all v ∈ [0, 1] (11)

then X ≤MRL (X|Y > y) for all y ∈ SY and all F̄Y.

Proof. Observe that (11) is equivalent to:∫ 1
z Ĉ(1− u, 1)du∫ 1

z Ĉ(1− u, 1− v)du
is decreasing in z for all v ∈ [0, 1]. (12)

Defining:

K(1− u, i) =


Ĉ(1− u, 1), i = 0

Ĉ(1− u, 1− v), i = 1,

then (11) can be restated as TP2 in the (z, i) property of
∫ 1

z K(1− u, i)du. Thus, by applying
Corollary 1 one gets that

∫ ∞
t K(1− FX(u), i)du is also TP2 in (t, i), i.e., that:∫ ∞

t Ĉ(1− FX(u), 1− FY(0))du∫ ∞
t Ĉ(1− FX(u), 1− FY(v))du

is decreasing in t for all v ∈ [0, 1],

which means: ∫ ∞
t F̄(u, 0)du∫ ∞
t F̄(u, s)du

is decreasing in t for all s ≥ 0,

i.e., X ≤MRL (X|Y > y) for all y. Note that the strict monotonicity of FX is required in
this proof.

Note that the sufficient conditions for RTI0
MRL(X|Y) described in Corollary 4 were

proven already in [2] with a different and longer proof. However, the strict monotonicity of
F̄X is not required in the proof provided there. Moreover, note that (11) is also a necessary
condition since equation (3.5) appearing in [2] is what one gets by choosing uniform
distributions. However, we think that the convexity of F̄X is not a necessary condition.
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Alternative conditions for RTI0
MRL(X|Y) are described also in Proposition 3.3 (vi),

of [13] (obtained from [18]), and are:

E(X) ≤ E(X|Y > y) ∀y ∈ R (13)

and:
1
u

Ĉ(u, v) is the bathtub in u for all v ∈ [0, 1]. (14)

Clearly, (13) is a necessary condition (because they are the values of the respective
MRL functions at zero).

It is useful to point out that the counterexamples provided in Section 6 show that there
exist no relationships between PQD (i.e., Ĉ(u, v) ≥ uv for all u, v ∈ [0, 1]) and both (11)
and (14).

The Positive Quadrant Dependence in Expectation property (PQDE), defined in [19],
is considered in the following statement. According to the definition provided in [19],
and the notation used here, we say that the vector (X, Y) satisfies PQDE(X|Y) if, and only
if, E(X) ≤ E(X|Y > y) for all y ∈ R (and similarly for PQDE(Y|X)). Note that, actually,
a study on a negative dependence notion analog of the property PQDE(Y|X) goes back
to [20].

Proposition 15. Let (X, Y) be a vector of non-negative variables having continuous marginal
distribution functions FX and FY, respectively. Assuming that E(X|Y > y) and E(X|Y ≤ y) exist
for all y, then the following conditions are equivalent:

(i) E(X) ≤ E(X|Y > y) for all y ∈ R (i.e., PQDE(X|Y));
(ii) E(X) ≥ E(X|Y ≤ y) for all y ∈ R;
(iii) Cov(X, φ(Y)) ≥ 0 for all increasing real functions φ for which the covariance exists;
(iv) The survival copula Ĉ satisfies:

∫ 1

0
(Ĉ(u, v)− uv) dF̄−1

X (u) ≤ 0, ∀v ∈ [0, 1]. (15)

Proof. For the equivalence between (i) and (ii), note that, for fixed y ∈ R, one has:

E(X) = Pr(Y > y)E(X|Y > y) + Pr(Y ≤ y)E(X|Y ≤ y),

which implies:

[E(X)− E(X|Y > y)]P(Y > y) = P(Y ≤ y)[E(X|Y ≤ y)− E(X)]. (16)

Thus, E(X)− E(X|Y > y) and E(X|Y ≤ y)− E(X) must have the same sign, and the
equivalence follows. In a similar manner, again by using Inequality (16), one can prove the
equivalence between (i) and (iii) (see [20], Theorem 3.1, for details). For the relationship
between (i) and (iv), observe that:

E(X) = −
∫ 0

−∞
F(x)dx +

∫ ∞

0
F(x)dx,

and similarly for E(X|Y > y). If the marginal expectations are finite, then:

E(X|Y > y)− E(X) =
∫ ∞

−∞
[Pr(X > x|Y > y)− Pr(X > x)]dx.

We can thus verify that E(X) ≤ E(X|Y > y) for all y if, and only if,∫ ∞

−∞
[Ĉ(F̄X(x), F̄Y(y))− F̄X(x)F̄Y(y)]dx ≥ 0, ∀y
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or: ∫ 1

0
(Ĉ(u, v)− uv) dF̄−1

X (u) ≤ 0, ∀t, ∀v ∈ [0, 1].

Note that, as an immediate consequence of the preceding proposition, we have that
the PQD property implies E(X) ≤ E(X|Y > y) for all y and all F̄X, F̄Y, if the expectations
exist. Moreover, it is easy to verify that rX,Y ≥ 0 if E(X) ≤ E(X|Y > y) for all y, where:

rX,Y =
1

σXσY

∫ 1

0

∫ 1

0
(Ĉ(u, v)− uv) dF̄−1

X (u)dF̄−1
Y (v)

is the Pearson’s correlation coefficient (here, σX and σY are the standard deviations of X
and Y, respectively). For the formula of rX,Y, see, e.g., [21].

For RTIMRL(X|Y), we have the following property.

Proposition 16. Let (X, Y) be a random vector with continuous marginal distribution functions
FX and FY. Then, the following conditions are equivalent:

(i) (X|Y > y1) ≤MRL (X|Y > y2) for all y1 ≤ y2, y1, y2 ∈ R (i.e., RTIMRL(X|Y));
(ii) (Xt|Y > y1) ≤MRL (Xt|Y > y2) for all y1 ≤ y2, y1, y2 ∈ R, and for all t ∈ R;
(iii) (Xt|Y > y1) ≤ICX (Xt|Y > y2) for all y1 ≤ y2, y1, y2 ∈ R, and for all t ∈ R;
(iv) The survival copula Ĉ satisfies:∫ z

0
[Ĉ(z, v1)Ĉ(u, v2)− Ĉ(z, v2)Ĉ(u, v1)] dF̄−1

X (u) ≤ 0 (17)

for all z ∈ [0, 1] and 0 ≤ v1 ≤ v2 ≤ 1.

Proof. The equivalence between the first three items follows from Proposition 3. For the
equivalence with (iv), observe that (X|Y > y1) ≤MRL (X|Y > y2) for all y1 ≤ y2 if, and
only if, ∫ ∞

t F̄(x, y1)dx∫ ∞
t F̄(x, y2)dx

decreases in t ∀y1 ≤ y2,

i.e., if, and only if, ∫ ∞
t Ĉ(F̄X(x), v1)dx∫ ∞
t Ĉ(F̄X(x), v2)dx

decreases in t ∀ 0 ≤ v2 ≤ v1 ≤ 1.

This is equivalent to:

−Ĉ(F̄X(t), v1)
∫ ∞

t
Ĉ(F̄X(x), v2)dx + Ĉ(F̄X(t), v2)

∫ ∞

t
Ĉ(F̄X(x), v1)dx ≤ 0

for all 0 ≤ v2 ≤ v1 ≤ 1 and t ∈ SX . The latter can be written as:∫ 0

z
[Ĉ(z, v1)Ĉ(u, v2)− Ĉ(z, v2)Ĉ(u, v1)]dF̄−1

X (u) ≥ 0

for all z ∈ [0, 1] and 0 ≤ v2 ≤ v1 ≤ 1, which is equivalent to (17).

Note that, as an immediate consequence of the preceding proposition, we have that
the RCSI property (i.e., Ĉ is TP2) implies (X|Y > y1) ≤MRL (X|Y > y2) for all y1 ≤ y2 and
all F̄X , F̄Y.

Corollary 5. Under the above assumptions, if F̄X is strictly monotone and convex and:∫ z

0
Ĉ(u, v) du is TP2 in (z, v) ∈ [0, 1]2 (18)
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then (X|Y > y1) ≤MRL (X|Y > y2) for all y1 ≤ y2, y1, y2 ∈ R and all F̄Y.

Proof. From (18) and the convexity of F̄X , by applying Corollary 1, one gets that
∫ 1

t C(1−
FX(u), 1− v)du is also TP2 in (t, v). This implies that:∫ ∞

t C(1− FX(u), 1− FY(v1))du∫ ∞
t C(1− FX(u), 1− FY(v2))du

is decreasing in t for all 0 ≤ v1 ≤ v2 ≤ 1,

which means: ∫ ∞
t F(u, s1)du∫ ∞
t F(u, s2)du

is decreasing in t for all 0 ≤ s1 ≤ s2,

i.e., (X|Y > s1) ≤MRL (X|Y > s2).

Note that the sufficient conditions for RTIMRL(X|Y) described in Corollary 5 were
proven already in [1] with a different and less immediate proof. However, the strict
monotonicity of F̄X is not required in the proof provided there.

The relationships between these new dependence notions and the ones described
in the previous section are summarized in the following Table 4. Note that the fact that
PQD(X, Y) is not implied by RTIMRL(X|Y), mentioned in the table, is because the MRL
order does not imply the ST order.

Table 4. Relationships among weak positive dependence properties.

rX,Y ≥ 0
⇑

PQDE(X|Y) ⇐ RTI0
ICX(X|Y) ⇐ RTI0

MRL(X|Y)
⇑ ⇑ ⇑

RTI0
ICX(Y|X) ⇐ PQD(X, Y) 6⇐ RTIMRL(X|Y)
⇑ 6⇑ ⇑

RTI0
MRL(Y|X) ⇐ RTIMRL(Y|X) ⇐ RCSI(X, Y)

To avoid false implications in Table 4, one can try to replace the PQD property with
the RTIICX(X|Y) property, for which we have the following statements.

Proposition 17. Let (X, Y) be a random vector with continuous distribution functions FX and FY.
Then, the following conditions are equivalent:

(i) (X|Y > y1) ≤ICX (X|Y > y2) for all y1 ≤ y2, y1, y2 ∈ R (i.e., RTIICX(X|Y));
(ii) The survival copula Ĉ satisfies:∫ z

0
[v2Ĉ(u, v1)− v1Ĉ(u, v2)] dF̄−1

X (u) ≤ 0, ∀z ∈ [0, 1] and ∀ 0 ≤ v1 ≤ v2 ≤ 1. (19)

Proof. Observe that (X|Y > y1) ≤ICX (X|Y > y2) for y1 ≤ y2, if, and only if,∫ ∞

t

[
F̄(x, y1)

F̄(0, y1)
− F̄(x, y2)

F̄(0, y2)

]
dx ≤ 0 ∀t,

i.e., if, and only if, ∫ ∞

t
[F̄(x, y1)F̄(0, y2)− F̄(x, y2)F̄(0, y1)]dx ≤ 0 ∀t.

The latter is the same as:∫ ∞

t

[
Ĉ(F̄(x), v1)v2 − Ĉ(F̄(x), v2)v1

]
dx ≤ 0
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for v1 ≥ v2 and t ∈ R, which can be also restated as:∫ F̄(t)

0

[
Ĉ(u, v1)v2 − Ĉ(u, v2)v1

]
dF̄−1

X (u) ≥ 0

for v1 ≥ v2 and t ∈ R. This is the same as (19).

Corollary 6. Under the above assumptions, if F̄X is convex and:∫ z

0
[v2Ĉ(u, v1)− v1Ĉ(u, v2)] du ≥ 0, ∀z ∈ [0, 1] and ∀ 0 ≤ v1 ≤ v2 ≤ 1, (20)

then (X|Y > y1) ≤ICX (X|Y > y2) for y1 ≤ y2, y1, y2 ∈ R and all FY.

Proof. Since F̄X is decreasing and convex, then F̄−1
X (u) is decreasing and convex and

−F̄−1
X (u) is increasing and concave. Then, by applying Lemma 7.1(b) of [6] to Equation (20)

above, we obtain: ∫ z

0
[v2Ĉ(u, v1)− v1Ĉ(u, v2)] d

(
−F−1

X (u)
)
≥ 0 (21)

for all z ∈ [0, 1] and 0 ≤ v1 ≤ v2 ≤ 1, which is the same as (19).

Thus, the relationships between the new dependence notions (and some of the
strong ones) are summarized in the following Table 5, where only the dependencies
of X given Y are considered (due to the fact that the RTIICX(X|Y) is not symmetric, i.e.,
that RTIICX(X|Y) is different than RTIICX(Y|X)). However, a similar table can be obtained
for (Y|X).

Table 5. Relationships among weak positive dependence properties.

rX,Y ≥ 0
⇑

PQDE(X|Y) ⇐ RTI0
ICX(X|Y) ⇐ RTI0

MRL(X|Y)
⇑ ⇑ ⇑

RTI0
ICX(X|Y) ⇐ RTIICX(X|Y) ⇐ RTIMRL(X|Y)
⇑ ⇑ ⇑

PQD(X, Y) ⇐ RTIST(X|Y) ⇐ RCSI(X, Y)

All the properties mentioned above are not independent of the marginal distributions
of (X, Y), and the convexity of the marginal survival functions is required. However, inter-
esting properties of the survival copula of the vector are introduced. In the following, these
particular properties are studied in detail, and their mutual relationships are pointed out.

To this aim, first observe that considering the property of the copula rather than the
property of the vector, one gets a different final result in terms of dependence indexes.
In fact, letting P denote the property:∫ z

0
[Ĉ(u, v)− uv] du ≥ 0, ∀z ∈ [0, 1], ∀v ∈ [0, 1],

and letting P̃ denote the property:

X ≤ICX (X|Y > y) ∀y ∈ R and for fixed continuous survival functions F̄X , F̄Y,

one immediately observes that both are positive dependence properties weaker than PQD,
but with different implications. Property P verifies:

PQD ⇒ P⇒ ρX,Y ≥ 0,
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where:

ρX,Y = 12
∫ 1

0

∫ 1

0
C(u, v)dudv− 3

is the Spearman’s rho coefficient for X and Y (for the formula of ρX,Y,, see equation (5.1.15c)
in [11]), and the first implication follows from (6). Property P̃ verifies:

PQD ⇒ P̃⇒ rX,Y ≥ 0. (22)

Because of this fact, one can define weak dependence properties as has been done
for P, by letting the margins be uniformly distributed on (0, 1) in the definitions above.
Doing this, one gets the weak positive dependence properties described in the statement
that follows (easy to prove). Note that property P described above is denoted here as P2.

Proposition 18. Let (U, V) be a random vector having uniformly U[0, 1] distributed margins. Then:

(P1) E(U) ≤ E(U|V > v) for all v (i.e., PQDE(U|V)) if, and only if,

∫ 1

0
[Ĉ(u, v)− uv]du ≥ 0 for all v ∈ [0, 1]; (23)

(P2) U ≤ICX (U|V > v) for all v (i.e., RTI0
ICX(U|V)) if, and only if,∫ z

0
[Ĉ(u, v)− uv]du ≥ 0 for all v, z ∈ [0, 1]; (24)

(P3) U ≤MRL (U|V > v) for all v (i.e., RTI0
MRL(U|V)) if, and only if,∫ z

0
[zĈ(u, v)− uĈ(z, v)]du ≥ 0 for all v, z ∈ [0, 1]; (25)

(P4) (U|V > v1) ≤ICX (U|V > v2) for all v1 ≤ v2 (i.e., RTIICX(U|V)) if, and only if,∫ z

0
[v2Ĉ(u, v1)− v1Ĉ(u, v2)]du ≥ 0 for all z ∈ [0, 1] and v1 ≤ v2; (26)

(P5) (U|V > v1) ≤MRL (U|V > v2) for all v1 ≤ v2 (i.e., RTIMRL(U|V)) if, and only if,∫ z

0
[Ĉ(z, v2)Ĉ(u, v1)− Ĉ(z, v1)Ĉ(u, v2)]du ≥ 0 for all z ∈ [0, 1] and v1 ≤ v2. (27)

Remark 1. The relationships between these properties can be better understood by considering
their equivalent formulations described as follows.

For (23), observe that it is the same as:∫ 1

0
[Ĉ(u, v)Ĉ(1, 1)− Ĉ(u, 1)Ĉ(1, v)]du ≥ 0 for all v ∈ [0, 1],

i.e., ∫ 1
0 Ĉ(u, v)du

Ĉ(1, v)
≥
∫ 1

0 Ĉ(u, 1)du

Ĉ(1, 1)
∀v ∈ [0, 1]. (28)

In a similar manner, one has that (24) holds if, and only if,∫ z
0 Ĉ(u, v)du

Ĉ(1, v)
≥
∫ z

0 Ĉ(u, 1)du

Ĉ(1, 1)
∀v, z ∈ [0, 1]. (29)

Clearly, (29) implies (28), i.e., property P2 implies P1.
For (25), observe that it is the same as:
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Ĉ(z, 1)
∫ z

0
Ĉ(u, v)du− Ĉ(z, v)

∫ z

0
Ĉ(u, 1)du ≥ 0 for all v, z ∈ [0, 1],

which in turn means that:∫ z
0 Ĉ(u, v)du∫ z
0 Ĉ(u, 1)du

decreases in z ∈ [0, 1] for every fixed v ∈ [0, 1]. (30)

Note that (30) is the same as:∫ z
0 Ĉ(u, v)du

Ĉ(z, v)
≥
∫ z

0 Ĉ(u, 1)du

Ĉ(z, 1)
∀z, v ∈ [0, 1].

Thus it follows that, if (25) holds, then:∫ z
0 Ĉ(u, v)du∫ z
0 Ĉ(u, 1)du

≥
∫ 1

0 Ĉ(u, v)du∫ 1
0 Ĉ(u, 1)du

≥ Ĉ(1, v)
Ĉ(1, 1)

∀v, z ∈ [0, 1],

and (24) holds. Thus, property P3 implies P2.
For (26), just observe that we can rewrite it as:∫ z

0
[Ĉ(1, v2)Ĉ(u, v1)− Ĉ(1, v1)Ĉ(u, v2)]du ≥ 0 for all v1 ≤ v2,

i.e., ∫ z
0 Ĉ(u, v1)du

Ĉ(1, v1)
≥
∫ z

0 Ĉ(u, v2)du

Ĉ(1, v2)
∀z ∈ [0, 1] and 0 ≤ v1 ≤ v2 ≤ 1. (31)

Clearly, (31) implies (29), i.e., property P4 implies P2.
Finally, (27) is the same as:∫ z

0 Ĉ(u, v1)du

Ĉ(z, v1)
≥
∫ z

0 Ĉ(u, v2)du

Ĉ(z, v2)
∀z ∈ [0, 1] and 0 ≤ v1 ≤ v2 ≤ 1,

which means that:∫ z
0 Ĉ(u, v1)du∫ z
0 Ĉ(u, v2)du

decreases in z ∈ [0, 1] for every fixed v1 ≤ v2, (32)

i.e.,
∫ z

0 Ĉ(u, v)du is TP2 in (z, v) ∈ [0, 1]2. Clearly, (32) implies (30) (i.e., P5 implies P3). Moreover,
it implies (31) (i.e., P4), as it can be proven in a similar manner as we proved that (30) implies (29).

These equivalent formulations of the properties of Ĉ, and their mutual implications,
are described in the following Table 6. Note that all these properties only depend on the
copula, thus being actually dependence properties. Some strong dependence properties are
included in the chain of relationships, i.e., the PQD (PQD(U, V)), the RTI (RTIST(U|V)),
and the RCSI (RCSI(U, V)) properties.

Table 6. Relationships among weak positive dependence properties.

ρU,V ≥ 0
⇑

PQDE(U|V) ⇐ RTI0
ICX(U|V) ⇐ RTI0

MRL(U|V)
⇑ ⇑ ⇑

RTI0
ICX(U|V) ⇐ RTIICX(U|V) ⇐ RTIMRL(U|V)
⇑ ⇑ ⇑

PQD(U, V) ⇐ RTIST(U|V) ⇐ RCSI(U, V)
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5. Reversed Weak Dependence Notions

By considering relationships between inactivity times rather than residual times,
one can define other dependence notions, which we call “reversed weak dependence
notions”. In particular, the notions considered here are based on comparisons in the
MIT and the ICV orders and on the LTD property. Thus, the notions considered here
are LTD∞

ICV(X|Y), LTD∞
MIT(X|Y), LTDICV(X|Y), LTDMIT(X|Y), and the one based on

inequality E(X) ≥ E(X|Y ≤ y) for all y ≥ 0 (which is actually equivalent to PQDE(X|Y),
as seen in Proposition 15).

All the proofs of the statements described in this section follow the same lines of
those described in Section 4 and are therefore omitted, except for the first one (given as an
example).

Proposition 19. Let (X, Y) be a random vector with continuous marginal distribution functions
FX and FY. Then, X ≥ICV (X|Y ≤ y) for all y ∈ R (i.e., LTD∞

ICV(X|Y)) if, and only if:∫ z

0
(C(u, v)− uv) dF−1

X (u) ≥ 0, ∀z, v ∈ [0, 1]. (33)

Proof. It is clear that X ≥ICV (X|Y ≤ y) for all y, if, and only if,∫ t

−∞
Pr(X ≤ x)dx ≤

∫ t

−∞
Pr(X ≤ x|Y ≤ y)dx, ∀t, ∀y.

This is equivalent to:∫ t

−∞
[C(FX(x), FY(y))− FX(x)FY(y)]dx ≥ 0, ∀t, ∀y

or: ∫ FX(t)

0
(C(u, v)− uv) dF−1

X (u) ≥ 0, ∀t, ∀v ∈ [0, 1].

Since FX is continuous, this is the same as (33).

Corollary 7. Under the above assumptions, if FX is convex and:∫ t

0
(C(u, v)− uv) du ≥ 0, ∀t, v ∈ [0, 1], (34)

then X ≥ICV (X|Y ≤ y) for all y ∈ R (i.e., LTD∞
ICV(X|Y)) for all FY.

Proof. The result follows by applying Lemma 7.1(b) of [6] to equation (34) above.

From Proposition 6, we obtain the following result.

Proposition 20. Let (X, Y) be a random vector with continuous marginal distribution functions
FX and FY. Then, the following conditions are equivalent:

(i) X ≥MIT (X|Y ≤ y) for all y ∈ R (i.e., LTD∞
MIT(X|Y));

(ii) tX ≤MIT (tX|Y ≤ y) for all y, t ∈ R;
(iii) tX ≤ICX (tX|Y ≤ y) for all y, t ∈ R;
(iv)

∫ t
0 [tC(u, v)− uC(t, v)) dF−1

X (u) ≤ 0, ∀t, v ∈ [0, 1].

Corollary 8. Under the above assumptions, if FX is convex and:∫ t

0
[tC(u, v)− uC(t, v)) du ≥ 0, ∀t, v ∈ [0, 1], (35)

then X ≥MIT (X|Y ≤ y) for all y ∈ R (i.e., LTD∞
MIT(X|Y)) for all FY.
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Proposition 21. Let (X, Y) be a random vector with continuous distribution functions FX and FY.
Then, (X|Y ≤ y2) ≥ICV (X|Y ≤ y1) for all y1 ≤ y2, y1, y2 ∈ R (i.e., LTDICV(X|Y)) if, and
only if: ∫ t

0
[v2C(u, v1)− v1C(u, v2)] dF−1

X (u) ≥ 0, ∀t ∈ [0, 1], ∀ 0 ≤ v1 ≤ v2 ≤ 1. (36)

Corollary 9. Under the above assumptions, if FX is convex and:∫ t

0
[v2C(u, v1)− v1C(u, v2)] du ≥ 0, ∀t ∈ [0, 1], ∀v1 ≤ v2, (37)

then (X|Y ≤ y2) ≥ICV (X|Y ≤ y1) for all y1 ≤ y2, y1, y2 ∈ R (i.e., LTDICV(X|Y)) for all FY.

The following theorem can also be obtained from Proposition 6.

Proposition 22. Let (X, Y) be a random vector with continuous marginal distribution functions
FX and FY. Then, the following conditions are equivalent:

(i) (X|Y ≤ y2) ≥MIT (X|Y ≤ y1) for all y1 ≤ y2, y1, y2 ∈ R (i.e., LTDMIT(X|Y));
(ii) (tX|Y ≤ y2) ≤MIT (tX|Y ≤ y1) for all y1 ≤ y2, y1, y2 ∈ R and t ∈ R;
(iii) (tX|Y ≤ y2) ≤ICX (tX|Y ≤ y1) for all y1 ≤ y2, y1, y2 ∈ R and t ∈ R;
(iv)

∫ t
0 [C(t, v2)C(u, v1)− C(t, v1)C(u, v2)]dF−1

X (u) ≥ 0, ∀t ∈ [0, 1], ∀ 0 ≤ v1 ≤ v2 ≤ 1.

Corollary 10. Under the above assumptions, if FX is convex and:∫ t

0
[C(t, v2)C(u, v1)− C(t, v1)C(u, v2)]du ≥ 0, ∀t ∈ [0, 1], ∀ 0 ≤ v1 ≤ v2 ≤ 1, (38)

then (X|Y ≤ y2) ≥MIT (X|Y ≤ y1) for all y1 ≤ y2, y1, y2 ∈ R (i.e., LTDMIT(X|Y)) for all FY.

Proposition 23. Let (X, Y) be a random vector with continuous marginal distribution functions
FX and FY. Then, E(X) ≥ E(X|Y ≤ y) for all y ∈ R, whenever the expectations exist, if, and only if:∫ 1

0
(C(u, v)− uv) dF−1

X (u) ≥ 0, ∀t, v ∈ [0, 1]. (39)

Note that the following chain of implications holds.

PQD =⇒ X ≥ICV (X|Y ≤ y) ∀y =⇒ E(X) ≥ E(X|Y ≤ y) ∀y =⇒ rX,Y ≥ 0.

Thus, all the notions described above are positive dependence notions, depending on
the marginal distributions of (X, Y), whose relationships are described in Table 7.

As has been done for the positive dependence notions in the previous section, one
can again define weak dependence properties that are independent of the margins by
considering only the properties of the connecting copula C, thus letting the margins be
uniformly distributed on (0, 1) in the definitions above. Doing so, one gets the weak
positive dependence properties described in the statement that follows.

Table 7. Relationships among reversed weak dependence properties.

rX,Y ≥ 0
⇑

LTD∞
MIT(X|Y) ⇒ LTD∞

ICV(X|Y) ⇒ PQDE(X|Y)
⇑ ⇑ ⇑

LTDMIT(X|Y) ⇒ LTDICV(X|Y) ⇒ LTD∞
ICV(X|Y)

⇑ ⇑ ⇑
RCSI(X, Y) ⇒ LTDST(X|Y) ⇒ PQD(X, Y)
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Proposition 24. Let (U, V) be a random vector having uniformly U[0, 1] distributed margins. Then:

(PR
1 ) E(U) ≥ E(U|V ≤ v) for all v (i.e., PQDE(U|V)) if, and only if,

∫ 1

0
[C(u, v)− uv]du ≥ 0 for all v ∈ [0, 1];

(PR
2 ) U ≥ICV (U|V ≤ v) for all v (i.e., LTD∞

ICV(U|V)) if, and only if,∫ z

0
[C(u, v)− uv]du ≥ 0 for all v, z ∈ [0, 1];

(PR
3 ) U ≥MIT (U|V ≤ v) for all v (i.e., LTD∞

MIT(U|V)) if, and only if,∫ z

0
[zC(u, v)− uC(z, v)]du ≥ 0 for all v, z ∈ [0, 1];

(PR
4 ) (U|V ≤ v2) ≥ICV (U|V ≤ v1) for all 0 ≤ v1 ≤ v2 ≤ 1 (i.e., LTDICV(U|V)) if, and only

if, ∫ z

0
[v2C(u, v1)− v1C(u, v2)]du ≥ 0 for all z ∈ [0, 1] and 0 ≤ v1 ≤ v2 ≤ 1;

(PR
5 ) (U|V ≤ v2) ≥MIT (U|V ≤ v1) for all v1 ≤ v2 (i.e., LTDMIT(U|V)) if, and only if,∫ z

0
[C(z, v2)C(u, v1)− C(z, v1)C(u, v2)]du ≥ 0 for all z ∈ [0, 1] and 0 ≤ v1 ≤ v2 ≤ 1.

The relationships among these notions can be proven as described for the weak
positive dependence properties and are listed in Table 8.

Table 8. Relationships among reversed weak dependence properties.

ρU,V ≥ 0
⇑

LTD∞
MIT(U|V) ⇒ LTD∞

ICV(U|V) ⇒ PQDE(U|V)
⇑ ⇑

LTDMIT(U|V) ⇒ LTDICV(U|V) ⇒ LTD∞
ICV(U|V)

⇑ ⇑ ⇑
RCSI(U, V) ⇒ LTDST(U|V) ⇒ PQD(U, V)

6. Counterexamples

Comments on the relationships among the above-described properties of copulas are
given here, together with other useful counterexamples, like the first one that follows,
which shows that the convexity of F̄X is not a necessary condition for RTI0

MRL(X|Y).

Example 1. Let us consider an FGM survival copula, that is,

Ĉ(u, v) = uv + θuv(1− u)(1− v)

for θ ∈ [−1, 1]. Then:

∂1Ĉ(u, v) = v + θv(1− v)− 2θuv(1− v)

is decreasing in u when θ ≥ 0. Hence, from Proposition 8, we get X ≤LR (X|Y > s) for all s and all
F̄X, F̄Y (i.e., RTI0

LR(X|Y)). Therefore, X ≤MRL (X|Y > s) for all s and all F̄X, F̄Y. Therefore, we
do not need the condition “F̄X is convex” for RTI0

MRL(X|Y) to hold. A straightforward calculation
shows that (11) holds for this copula when θ ≥ 0.
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In the next example, we discuss the relationships between Ĉ(u, v) ≥ uv (PQD prop-
erty) and the conditions on Ĉ for RTI0

MRL(X|Y) to hold, i.e., (11) (which is the same as
RTI0

MRL(U|V)) and (14). In particular, it proves that the PQD property does not imply (11)
or (14). Moreover, it also proves that RTI0

ICX(X|Y) does not imply RTI0
MRL(X|Y).

Example 2. Let us consider a random vector (X, Y) with the following Fredricks–Nelsen survival
copula (see, e.g., p. 32 in [12]):

Ĉ(u, v) = min
(

u, v,
u2 + v2

2

)
.

Clearly, Ĉ(u, v) ≥ uv since u2 + v2 ≥ 2uv for all u, v ∈ [0, 1]. Hence, (X, Y) is PQD, and so,
X ≤ST (X|Y > s) for all s and all FX , FY (i.e., RTI0

ST(X|Y) holds). Therefore, RTI0
ICX(X|Y) and

RTI0
ICX(U|V) hold as well. A straightforward calculation shows that Ĉ(u, v)/u is not decreasing

in u for all v ∈ [0, 1], that is (X, Y) is not RTI(Y|X). Therefore, X ≤HR (X|Y > s) does not hold
for all s and all FX , FY.

Let us see now that (X, Y) (or Ĉ) does not satisfy (11). Hence, X ≤MRL (X|Y > s) does not
hold for all s and all FX , FY (e.g., for uniform distributions). For a fixed v ∈ (0, 1), let us consider
an r.v. Zv having density defined as:

gv(u) =
Ĉ(u, v)

kv
=


u/kv for 0 ≤ u ≤ α1(v);
u2+v2

2kv
for α1(v) < u ≤ α2(v);

v/kv for α2(v) < u ≤ 1;
0 for u 6∈ [0, 1];

with kv :=
∫ 1

0 Ĉ(u, v)du > 0, 0 < α1(v) < α2(v) < 1,

α1(v) := 1−
√

1− v2

and:
α2(v) :=

√
2v− v2.

They are plotted in Figure 1, left. Note that (11) is equivalent to Z1 ≥RHR Zv for all
0 < v < 1. The associated distribution and reversed hazard rate functions are:

Gv(z) =
∫ z

0
gv(u)du =

1
kv

∫ z

0
udu =

z2

2kv

and:

h̄v(z) =
gv(z)
Gv(z)

=
2
z

for 0 ≤ z ≤ α1(v). Analogously, for α1(v) < z ≤ α2(v), we get:

Gv(z) =
∫ z

0
gv(u)du =

α2
1(v)
2kv

+
∫ z

α1(v)

u2 + v2

2kv
du =

α2
1(v)
2kv

+
z3 − α3

1(v)
6kv

+
z− α1(v)

2kv
v2

and:

h̄v(z) =
gv(z)
Gv(z)

=
z2 + v2

α2
1(v) + (z3 − α3

1(v))/3 + v2(z− α1(v))

for α1(v) < z ≤ α2(v). By plotting h̄v, we see that h̄v(z) and h1(z) = 2/z are not ordered for
α1(v) < z ≤ α2(v). For example, if v = 0.3, then α1(v) = 0.0460608 and α2(v) = 0.7141428,
and we obtain the reversed hazard rate functions h̄v(z) plotted in Figure 1, right, for
0.0460608 < z < 0.7141428. Therefore, Zv and Z1 are not RHR-ordered, and (11) does not
hold.



Mathematics 2021, 9, 81 24 of 27

Finally, we prove that (14) does not hold. For 0 < u ≤ α1(v),

βv(u) :=
1
u

Ĉ(u, v) = 1

and for α1(v) < u < α2(v):

βv(u) :=
1
u

Ĉ(u, v) =
u
2
+

v2

2u
.

Then:

β′v(u) =
1
2
− v2

2u2 =
u2 − v2

2u2

for α1(v) < u < α2(v). Hence, βv(u) is decreasing for α1(v) < u < v and increasing for
v < u < α2(v). Thus, for α2(v) < u < 1, we get:

βv(u) =
1
u

Ĉ(u, v) =
v
u

is decreasing in u for α2(v) < u < 1. Therefore, (14) does not hold.
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Figure 1. Functions (left) α1 (down) and α2 (top) for the copula in Example 2. Reversed hazard rate
functions (right) for Zv (black) and Z1 (red) when v = 0.3 for the copula in Example 2.

The following is a copula that satisfies both (11) (i.e., RTI0
MRL(U|V)) and (14), but not

the PQD property.

Example 3. Let us consider a random vector (X, Y) with the following survival copula:

Ĉ(u, v) = uv + θγ(u)g(v),

where θ ∈ [0, 1], γ(u) = sin(2πu)/(2π), and g(v) = v(1− v). It can be verified that γ satisfy
all the conditions for Ĉ to be a copula (see [22], for details). It is easy to see that it is not PQD (the
difference Ĉ(u, v)− uv is positive for 0 < u < 1/2 and negative for 1/2 < u < 1). To study (11),
we consider the function:∫ z

0 Ĉ(u, v)du∫ z
0 Ĉ(u, 1)du

=
1
z2

∫ z

0
Ĉ(u, v)du =

v
2
+

θv(1− v)
(2π)2

1− cos(2πz)
z2 .

It is easy to see that (1− cos(2πz))/z2 is decreasing for z ∈ (0, 1), so (11) holds. Moreover,
by plotting Ĉ(u, v)/u, we see that it is a bathtub in u for all v ∈ (0, 1). Hence, (14) also holds.



Mathematics 2021, 9, 81 25 of 27

7. Conclusions

In the paper, we analyzed the dependence properties related to orderings of condi-
tional distributions. The main novelties are new weak dependence notions related to mean
residual life, increasing concave, mean inactivity time, and increasing convex orders. All
these new classes imply positive or negative correlation coefficients and can be related
to the classical dependence properties defined in a similar way as the stochastic, hazard
rate, reversed hazard rate, and likelihood ratio orders. The relationships for all the positive
dependence notions (summarized in Table 9) are described in Figure 2. The relationships
for the negative dependence notions are similar.
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Figure 2. Relationships among the positive dependence notions in Table 9.

The main disadvantage of the new dependence notions proposed here is that they
depend on the marginal distributions (as the Pearson’s correlation coefficient). This problem
can be solved by replacing them with the respective copula properties obtained by assuming
uniform marginals. In this case, they imply a positive Spearman’s rho coefficient. Moreover,
we must say that there are other weak dependence notions that come through in papers
devoted to more specific areas, which are not studied here for the sake of brevity. This is
the case, for example, of the Gini correlation introduced in economics in [23] and further
studied in [24,25]. Given two random variables X and Y, the Gini correlation is a non-
symmetric measure given by:

ρX◦Y =
Cov(X, FY(Y))
Cov(X, FX(X))

whose properties are a mixture of Pearson’s and Spearman’s correlations. It follows from
Proposition 15(iii) that PQDE(X|Y) implies ρX◦Y ≥ 0. Furthermore, for simplicity, we have
just studied the bivariate case. The study of other notions and the extensions of these
dependence properties to n-dimensional random vectors are not straightforward and will
be studied in future research projects.
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Table 9. Positive dependence notions.

N Name

0 PQDE E(X) ≤
E(X|Y > s)

E(X) ≥
E(X|Y ≤ s)

1 PQD RTI0
ST(Y|X) RTI0

ST(X|Y) LTD∞
ST(Y|X) LTD∞

ST(X|Y)

2 RTI(Y|X) RTIST(Y|X) RTI0
HR(X|Y)

2’ RTI(X|Y) RTIST(X|Y) RTI0
HR(Y|X)

3 SI(Y|X) SIST(Y|X) RTI0
LR(X|Y) LTD∞

LR(X|Y)

3’ SI(X|Y) SIST(X|Y) RTI0
LR(Y|X) LTD∞

LR(Y|X)

4 LTD(Y|X) LTDST(Y|X) LTD∞
RHR(X|Y)

4’ LTD(X|Y) LTDST(X|Y) LTD∞
RHR(Y|X)

5 RCSI RTIHR(Y|X) RTIHR(X|Y)

6 LCSD LTDRHR(Y|X) LTDRHR(X|Y)

7 SIRL(Y|X) SIHR(Y|X) RTILR(X|Y)

7’ SIRL(X|Y) SIHR(X|Y) RTILR(Y|X)

8 SIRHR(Y|X) LTDLR(X|Y)

8’ SIRHR(X|Y) LTDLR(Y|X)

9 PLRD SILR(Y|X) SILR(X|Y)

10 RTIMRL(Y|X)

10’ RTIMRL(X|Y)

11 RTI0
MRL(Y|X)

11’ RTI0
MRL(X|Y)

12 RTIICX(Y|X)

12’ RTIICX(X|Y)

13 RTI0
ICX(Y|X)

13’ RTI0
ICX(X|Y)

14 LTDMIT(Y|X)

14’ LTDMIT(X|Y)

15 LTD∞
MIT(Y|X)

15’ LTD∞
MIT(X|Y)

16 LTDICV(Y|X)

16’ LTDICV(X|Y)

17 LTD∞
ICV(Y|X)

17’ LTD∞
ICV(X|Y)
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