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Abstract: Concurrent vector fields lying on lightlike hypersurfaces of a Lorentzian manifold are
investigated. Obtained results dealing with concurrent vector fields are discussed for totally umbilical
lightlike hypersurfaces and totally geodesic lightlike hypersurfaces. Furthermore, Ricci soliton
lightlike hypersurfaces admitting concurrent vector fields are studied and some characterizations for
this frame of hypersurfaces are obtained.
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1. Introduction

In 1943, K. Yano [1] proved that there exists a smooth vector field v, so-called concur-
rent on a Riemannian manifold (M, g) which satisfies the following condition: for every
vector field X tangent to M;

∇Xv = X, (1)

where ∇ is the Levi-Civita connection with respect to Riemannian metric g on M.
Applications of concurrent vector fields have been investigated and Riemannian and

semi-Riemannian manifolds equipped with concurrent vector fields have been intensely
studied by various authors (cf. [2–7]).

Beside these facts, the notion of a Ricci soliton is initially observed by Hamilton’s Ricci
flow and Ricci solitons drew attention after G. Perelman [8] applied Ricci solitons to solve
the Poincaré conjecture.

A Riemannian manifold (M, g) with a metric tensor g is called a Ricci soliton if there
exists a smooth vector field v tangent to M satisfying the following equation:

1
2

Lvg + Ric = λg, (2)

where Lvg is the Lie derivative of g with respect to v, Ric denotes the Ricci tensor and λ is
a constant. A Ricci soliton is called shrinking if λ > 0, steady if λ = 0, expanding if λ < 0.

Some interesting applications and characterizations dealing the Ricci soliton equation
given in (2) for Riemannian manifolds, semi-Riemannian manifolds and their submanifolds
have been obtained in [9–16] recently.

The main purpose of this paper is to investigate concurrent vector fields on lightlike
hypersurfaces and Ricci solitons lightlike hypersurfaces of a Lorentzian manifold. However,
there are some difficulties to deal with while examining concurrent vector fields and Ricci
solitons for these kinds of submanifolds. The first problem is that since the induced
metric is degenerate and hence not invertible for a lightlike hypersurface, some significant
differential operators such as the gradient, divergence, Laplacian operators with respect
to the degenerate metric cannot be defined. To get rid of this problem, we consider the
associated metric defined with the help of a rigging vector field. The second main problem
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is that the Ricci tensor of any lightlike hypersurface is not symmetric. In this case, the Ricci
soliton equation loses its geometric and physical meanings. To get rid of this problem, we
investigate this equation on lightlike hypersurfaces with the genus zero screen distribution
whose Ricci tensor is symmetric.

2. Preliminaries

In this section, we shall recall some basic definitions and theorems related to lightlike
hypersurfaces of a Lorentzian manifold by following [17–19].

Let (M̃, g̃) be a Lorentzian manifold with the Lorentzian metic g̃ of constant index 1
and (M, g) be an (n + 1)−dimensional lightlike hypersurface, n ≥ 2, of (M̃, g̃), where g
is the induced degenerate metric on M. Then the intersection of tangent bundle TM and
normal bundle TM⊥ is a one-dimensional subbundle such that this bundle is called the
radical distribution of M and it is denoted by Rad TM. Therefore, we write the radical
distribution at any point p ∈ M by the following equation:

Rad Tp M = {ξ ∈ Tp M : gp(ξ, X) = 0, ∀X ∈ TM}. (3)

For any lightlike hypersurface (M, g), there exists the complementary non-degenerate
(Riemannian) vector bundle of Rad TM in TM, called the screen distribution S(TM) of M
such that we have

TM = Rad TM⊕orth S(TM), (4)

where ⊕orth denotes the orthogonal direct sum. For any ξ in Rad TM, there exists a unique
section N of the lightlike transversal bundle tr(TM) such that we have

g̃(N, X) = g̃(N, N) = 0, g̃(N, ξ) = 1, ∀X ∈ Γ(S(TM)). (5)

Therefore, the tangent bundle TM̃ of M̃ is decomposed as follows:

TM̃ = TM⊕ tr(TM) = {TM⊥ ⊕ tr(TM)} ⊕orth S(TM), (6)

where ⊕ denotes the direct sum which is not orthogonal.
From (5) and (6), one can consider a basis {e1, .. . . . , en, ξ, N} on TM̃ such that

{e1, .. . . . , en} is an orthonormal basis of Γ(S(TM)). The basis {e1, .. . . . , en, ξ, N} is called a
quasi-orthonomal basis on TM̃.

Suppose that P to be the projection morphism of TM onto S(TM) and ∇̃ to be the
Levi-Civita connection of M̃. The Gauss and Weingarten formulas for the hypersurface are
given by

∇̃XY = ∇XY + B(X, Y)N, (7)

∇̃X N = −AN X + τ(X)N, (8)

∇XY = ∇∗XY + C(X, Y)ξ, (9)

∇Xξ = −A∗ξ X− τ(X)ξ, (10)

for any X, Y ∈ Γ(TM), where ∇ and ∇∗ are the induced linear connection on TM and
S(TM), respectively [17,19]. It is well known that there exist the following equalities
involving B and C and their shape operators A∗ξ and AN , respectively:

B(X, Y) = g(A∗ξ X, Y), (11)

C(X, PY) = g(AN X, PY). (12)

Note that S(TM) is not unique [20] and the second fundamental form B is independent
of the choice of a screen distribution and satisfies the condition B(X, ξ) = 0 for any
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X ∈ Γ(TM). It is known that the induced connection∇ given in (7) is not metric connection
and there exists the following relation for any X, Y, Z ∈ Γ(TM):

(∇Zg)(X, Y) = Zg(X, Y)− g(∇vX, Y)− g(∇ZY, X)

= B(Z, X)η(Y) + B(Z, Y)η(X). (13)

The Lie derivative of g̃ with respect to the its Levi-Civita connection ∇̃ is defined by

(LZ g̃)(X, Y) = g̃(∇̃XZ, Y) + g̃(∇̃YZ, X) (14)

for any X, Y, Z ∈ Γ(TM). For any lightlike hypersurface (M, g, S(TM)) of (M̃, g̃), we have
from (13) and (14) that

(LZg)(X, Y) = Zg(X, Y)− g([Z, X], Y)− g(X, [Z, Y])

= Zg(X, Y)− g(∇ZX, Y)− g(∇ZY, X) + g(∇XZ, Y)

+g(∇Yv, X)

= B(Z, X)η(Y) + B(Z, Y)η(X) + g(∇XZ, Y) + g(∇YZ, X) (15)

or equivalently we can write the Equation (15) that

(LZg)(X, Y) = (∇Zg)(X, Y) + g(∇XZ, Y) + g(∇YZ, X) (16)

for any X, Y, Z ∈ Γ(TM).
If B = 0 on TM, then M is called totally geodesic in M̃. A point p ∈ M is called

umbilical if
B(X, Y)p = λgp(X, Y), X, Y ∈ Tp M,

where λ is a constant. Furthermore, M is called totally umbilical in M̃ if every points of M
is umbilical [21].

A lightlike hypersurface (M, g, S(TM)) is called screen locally conformal if the shape
operators AN and A∗ξ are related by

AN = ϕA∗ξ . (17)

Here, ϕ is a non-vanishing smooth function on a neighborhood U on M. We note that
M is called screen homothetic if ϕ is a constant [22].

Let us denote the Riemann curvature tensors of M̃ and M by R̃ and R, respectively.
The Gauss-Codazzi type equations are given as follows:

g̃(R̃(X, Y)Z, PU) = g(R(X, Y)Z, PU) + B(X, Z)C(Y, PU)

− B(Y, Z)C(X, PU), (18)

g̃(R̃(X, Y)Z, ξ) = (∇XB)(Y, Z)− (∇YB)(X, Z)

+ B(Y, Z)τ(X)− B(X, Z)τ(Y), (19)

g̃(R̃(X, Y)Z, N) = g(R(X, Y)Z, N), (20)

g̃(R̃(X, Y)PZ, N) = (∇XC)(Y, PZ)− (∇YC)(X, PZ)

+ τ(Y)C(X, PZ)− τ(X)C(Y, PZ), (21)

for any X, Y, Z, U ∈ Γ(TM).
Let Π = Span{X, Y} be a 2-dimensional non-degenerate plane in Tp M at a point

p ∈ M. The sectional curvature of Π is given by

K(Π) =
g(R(X, Y)Y, X)

g(X, X)g(Y, Y)− g(X, Y)2 . (22)
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We note that since C is not symmetric, it is clear from (18) and (22) that the sectional
curvature map does not need to be symmetric on any lightlike hypersurface.

Theorem 1 ([17]). Let (M, g, S(TM)) be a lightlike hypersurface of a semi-Riemannian manifold
(M̃, g̃). Then the following assertions are equivalent:

(i) S(TM) is integrable.
(ii) C is symmetric on Γ(S(TM)).
(iii) AN is self-adjoint on Γ(S(TM)) with respect to g.

As a result of Theorem 1, we see that the sectional curvature map is symmetric on
every lightlike hypersurface whose screen distribution is integrable.

Let {e1, . . . . . . , en, ξ, N} be a quasi orthonormal basis on TM̃, where {e1, . . . . . . , en} be
an orthonormal basis of Γ(S(TM)). The induced Ricci type tensor R(0,2) of M is defined by

R(0,2)(X, Y) =
n

∑
j=1

g(R(ej, X)Y, ej) + g̃(R(ξ, X)Y, N) (23)

for any X, Y ∈ TM. We note that the induced Ricci type tensor R(0,2) is not symmetric for
any lightlike hypersurface.

Considering the Equation (20) and Theorem 1, we obtain the following corollary
immediately:

Corollary 1. The Ricci tensor R(0,2) is symmetric on lightlike hypersurface whose screen distribu-
tion is integrable.

A lightlike hypersurface (M, g, S(TM)) of a Lorentzian manifold is said to be of genus
zero with screen S(TM)0 (cf. [23]) if

(a) M admits a canonical or unique screen distribution S(TM)0 that induces a canonical
or unique lightlike transversal vector bundle N.

(b) M admits an induced symmetric Ricci tensor.

Let the Ricci tensor R(0,2) be symmetric on lightlike hypersurface (M, g, S(TM)).
The manifold M is called as an Einstein lightlike hypersurface [24] if, for any X, Y ∈ Γ(TM),
the following relation satisfies:

R(0,2)(X, Y) = γ g(X, Y), (24)

where γ is a constant.

3. Concurrent Vector Fields

For any lightlike hypersurface (M, g, S(TM)), some significant differential operators
such as the gradient, divergence, Laplacian operators could be defined by the help of a
rigging vector field and its associated metric (see [25–29]). Therefore, we shall initially
recall some basic facts related to rigging vector fields and their some basic properties before
studying concurrent vector fields on lightlike hypersurfaces.

Definition 1. Let (M, g, S(TM)) be a lightlike hypersurface of a Lorentzian manifold (M̃, g̃) and
ζ be a vector field defined in some open set containing M. Suppose that ζp /∈ Tp M for any p ∈ M.
If there exists a 1-form η satisfying η(X) = g̃(X, ζ) for any X ∈ Γ(TM), then ζ is called a rigging
vector field for M.
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Now, let N ∈ tr(TM) be a rigging vector field for M and η be a 1-form defined by
η(X) = g̃(X, N) for any X ∈ Γ(TM). In this case, one can define a (0, 2) type tensor g
as follows:

g(X, Y) = g(X, Y) + η(X)η(Y) (25)

for any X, Y ∈ Γ(TM). We note that the associated metric g is non-degenerate. From (3),
(5) and (25) we have

g(ξ, ξ) = 1, g(ξ, X) = η(X) (26)

and

g(X, Y) = g(X, Y), η(X) = 0 ∀X, Y ∈ Γ(S(TM)). (27)

Let f : U ⊂ M→ R be a smooth function and (x1, x2, . . . , xn) be a coordinate system
on U. Then the gradient of f with respect to g is defined by

grad f =
n+1

∑
i=1

gij ∂ f
∂xi

∂

∂xj
. (28)

Here, [gij] denotes the inverse of g coincided with g and [gij] is defined to be pseudo-
inverse of g [25].

Now, let v be a concurrent vector field on Γ(TM̃). Then, we can write v as the
tangential and transversal components by

v = vT + vN , (29)

where vT ∈ Γ(TM) and vN ∈ tr(TM). From (25) and (29), we have

g(vT , ξ) = g(vT , ξ) + η(vT)η(ξ)

= η(vT)

= g̃(vT , N). (30)

For any X ∈ Γ(TM), we write

Xg(vT , ξ) = Xg̃(vT , N)

= g̃(∇̃Xv, N) + g̃(v, ∇̃X N)

= g̃(X, N)− g̃(v, AN X) + τ(X)g̃(v, N),

which implies that

X g(vT , ξ) = η(X) + τ(X) η(v)− g̃(v, AN X). (31)

Now, we suppose that v = vT , that is, v lies in Γ(TM). In this case, we can write

v = vs + aξ, (32)

where vs ∈ Γ(S(TM)) and η(v) = a.
Taking into consideration the above facts, we get the following lemma:

Lemma 1. Let (M, g, S(TM)) be a lightlike hypersurface of a Lorentzian manifold (M̃, g̃). If v is
a concurrent vector field on Γ(TM), then we have

τ(v) =
1
a
(g̃(vs, ANv))− 1. (33)
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Proof. From (30)–(32), we have

(vs + aξ)g(vs + aξ, ξ) = g̃(vs + aξ, N)− g̃(vs + aξ, AN(vs + aξ))

+τ(vs + aξ)g̃(vs + aξ, N).

Therefore, we get

(vs + aξ)[g(vs, ξ)] + a(vs + aξ)[g(ξ, ξ)] = ag̃(ξ, N)− g̃(vs + aξ, ANvs)

−g̃(vs + aξ, AN aξ)

+τ(vs + aξ)(η(vs) + aη(ξ)).

By a straightforward computation, we have

0 = a− g̃(vs, ANv)− ag̃(vs, ANξ) + aτ(v),

which completes the proof of lemma.

Lemma 2. Let v be a concurrent vector field on Γ(TM). Then we have

∇Xv = X and B(X, v) = 0 (34)

for any X ∈ Γ(TM).

Proof. From (1) and (7), we get

∇̃Xv = ∇Xv + B(X, v)N = X. (35)

Considering the tangential and transversal parts of (35), we get (34) immediately.

Lemma 3. Let (M, g, S(TM)) be a screen conformal lightlike hypersurface of a Lorentzian manifold
(M̃, g̃). If v is a concurrent vector field on Γ(TM), then we have

τ(v) = −1. (36)

Proof. Under the assumption, we have from (9), (32) and Lemma 1 that

τ(v) =
1
a

C(v, vs)− 1,

which shows that

τ(v) =
1
a

1
ϕ

B(v, vs)− 1. (37)

From (34) and (37), we obtain (36).

Lemma 4. For any screen conformal lightlike hypersurface of a Lorentzian manifold, we have

∇∗ξ v = 0 and C(ξ, v) = 1, (38)

where v is a concurrent vector field on Γ(TM).

Proof. Using the fact the second fundamental form B vanishes on Rad(TM) and from (9),
we write

∇̃ξ v = ∇ξ v = ∇∗ξ v + C(ξ, v)ξ = ξ. (39)

From (4) and (39), the proof of lemma is completed.
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Theorem 2. Let (M, g, S(TM)) be a screen conformal lightlike hypersurface and v be a concurrent
vector field lying on Γ(TM). Then at least one of the following statements occurs.

(i) v lies in Γ(S(TM)).
(ii) τ(ξ) = 0.

Proof. From the Gauss and Weingarten formulas and Lemma 3, we have

∇vξ = −A∗ξ v + ξ (40)

and

∇̃vN = −ANv− ξ. (41)

Since v is the concurrent vector field, we have from Lemma 2 that

∇ξ v = ξ. (42)

Using (40) in (42), we obtain

[ξ, v] = −A∗ξ v. (43)

If we write v = vs + aξ in (43), we see that

[ξ, vs + aξ] = −A∗ξ (v
s + aξ).

Thus, we have

[ξ, vs] = −A∗ξ vs − aA∗ξ ξ. (44)

From (44), we get

∇ξ vs −∇vs ξ = −A∗ξ vs − aA∗ξ ξ

which implies that

∇∗ξ vs + C(ξ, vs)ξ − A∗ξ vs + τ(vs)ξ = −A∗ξ vs − aA∗ξ ξ. (45)

Since A∗ξ in Γ(S(TM)), we see from (45) that

τ(vs) + C(ξ, vs) = 0. (46)

Using Lemma 4 and (45), we get

τ(vs) = −1. (47)

Using the fact that τ(v) = −1, we have

τ(v) = τ(vs + aξ) = −1,

which shows that

aτ(ξ) = 0. (48)

Therefore, we get at least

a = 0 or τ(ξ) = 0, (49)

which implies the proof of theorem.
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From Theorem 2, we get the following corollary immediately:

Corollary 2. Let (M, g, S(TM)) be a screen conformal lightlike hypersurface and v is a concurrent
vector field such that v /∈ Γ(S(TM)), that is a 6= 0. Then τ(ξ) = 0.

Now, we shall recall the following proposition of K. L. Duggal and B. Sahin [19]:

Proposition 1 (Proposition 2.5.4, Page 77). Let (M, g, S(TM)) be a screen homothetic lightlike
hypersurface of an indefinite space form M̃(c) with constant curvature c. Then the following
relation holds:

2ϕ τ(ξ) B(X, PZ) = −c g(X, PZ). (50)

Under the hypothesis of the above proposition, one can obtain the following corollary:

Corollary 3. Let (M, g, S(TM)) be a screen homothetic lightlike hypersurface of a Lorentzain
space form M̃(c). Then, the following assertions hold:

(i) If τ = 0 then M̃ becomes the semi-Euclidean space.
(ii) If τ(ξ) 6= 0, then M is totally umbilical.

In the light of Corollaries 2 and 3, we get the following corollary immediately:

Corollary 4. Let (M, g, S(TM)) be a screen homothetic lightlike hypersurface of (M̃(c), g̃) and v
be a concurrent vector field such that v /∈ Γ(S(TM)). Then M̃ is the semi-Euclidean space. If the
concurrent vector field v lies on Γ(S(TM)) then M is totally umbilical.

Theorem 3. Every totally umbilical screen homothetic lightlike hypersurface (M, g, S(TM)) of a
Lorenzian space form M̃(c) admitting a concurrent vector field v on Γ(TM) is totally geodesic.

Proof. Under the assumption, we have from Theorem 2 that τ(ξ) = 0. Then we obvi-
ously have

∇ξ ξ = −A∗ξ ξ. (51)

Furthermore, using the fact that B(ξ, Y) = g(A∗ξ ξ, Y) we obtain that A∗ξ ξ = 0.
From (51), we have

∇ξ ξ = 0. (52)

Therefore, we get

R(ξ, v)ξ = ∇ξ∇vξ −∇v∇ξ ξ −∇[ξ,v]ξ

= ∇ξξ −∇[ξ,v]ξ. (53)

Considering the Equation (43), we have

R(ξ, v)ξ = ∇A∗ξ vξ. (54)

Using the fact that M is totally umbilical, we have

R(ξ, v)ξ = ∇λvξ

= λ∇vξ. (55)

Thus, we obtain from the Equation (40) that

R(ξ, v)ξ = λ(−A∗ξ v + ξ). (56)
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From (20) and (56), we have

g̃(R̃(ξ, v)ξ, N) = g̃(R(ξ, v)ξ, N) = λ. (57)

Finally we see that λ = 0 by considering Proposition 1 and the equation (57). This
fact shows us that M is totally geodesic.

Remark 1. From Theorem 2, we see that τ(ξ) does not have to be equal to zero. Therefore,
Theorem 3 is not correct when the concurrent vector field v lies on Γ(S(TM)). In a similar manner,
considering (53), we see that Theorem 3 is not correct when v lies on Rad(TM).

Now we shall investigate concurrent vector fields on the Levi-Civita connection with
respect to the associated metric g.

Let ∇ be the Riemannian connection of M̃ with respect to the associated metric g
given in the Equation (25) and ∇1 be the induced Riemann connection from ∇ onto TM.
Then we have the following:

Theorem 4. Let v be a concurrent vector field with respect to ∇̃. Then v is also concurrent with
respect to ∇1.

Proof. From (25), for any vector field X ∈ Γ(TM), we write

Xg(v, v) = Xg(v, v) + X
(

g̃(v, N)2
)

= 2g(∇Xv, v) + 2η(v)
[

g̃(∇̃Xv, N) + g̃(v, ∇̃X N)
]

= 2g(∇Xv, v) + 2η(v)[g̃(X, N) + g̃(X,−AN X + τ(X)N)]

= 2g(∇Xv, v) + 2η(v)[η(X)− g̃(v, AN X) + τ(X)η(v)]. (58)

Beside this fact, we have

Xg(v, v) = 2g(∇1
Xv, v)

= 2g(∇1
Xv, v) + 2η(∇1

Xv)η(v). (59)

From (58) and (59), we obtain

∇1
Xv + η(∇1

Xv)N = X + [η(X)− g̃(v, AN X) + τ(X)η(v)]N. (60)

Using (60), we get

∇1
Xv = X, η(∇1

Xv) = η(X)− g̃(v, AN X) + τ(X)η(v), (61)

which show that v is also concurrent with respect to ∇1.

We note that the converge part of Theorem 4 is not correct.
Taking into consideration (61), we obtain the following corollaries.

Corollary 5. Let v be a concurrent vector field with respect to ∇1. Then v is also concurrent with
respect to ∇ if and only if the following relation holds for all X ∈ Γ(TM):

η(∇1
Xv) = η(X)− g̃(v, AN X) + τ(X)η(v). (62)

Corollary 6. Let (M, g, S(TM)) be screen conformal with respect to ∇ and v be a concurrent
vector field with respect to ∇1. Then v is also concurrent with respect to ∇ if and only if the
following relation holds:

η(∇1
vv) = −g̃(v, ANv). (63)
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Corollary 7. Let (M, g, S(TM)) be totally geodesic screen conformal with respect to∇ and v be a
concurrent vector field with respect to ∇1. Then v is also concurrent with respect to ∇ if and only
if the following relation holds:

η(∇1
vv) = 0. (64)

Corollary 8. Let (M, g, S(TM)) be totally umbilical screen conformal with respect to∇. Suppose
v is a concurrent vector field with respect to ∇1. Then v is also concurrent with respect to ∇ if and
only if the following relation holds:

η(∇1
vv) = −λ g̃(v, v), λ ∈ R. (65)

4. Ricci Solitons on Lightlike Hypersurfaces

Let (M, g, S(TM)) be a lightlike hypersurface of a Lorenzian manifold (M̃, g̃). Suppose
that v is a concurrent vector field on Γ(TM̃). Then we can write the vector v as the tangential
and transversal components by

v = vT + f N, (66)

where vT ∈ Γ(TM) and f = g̃(v, ξ). In this case we have the followings:

Lemma 5. Let (M, g, S(TM)) be a lightlike hypersurface of a Lorenzian manifold (M̃, g̃) admit-
ting a concurrent vector field v on Γ(TM̃). Then

∇XvT = f AN X + X (67)

and

B(X, vT) = f τ(X)− X( f ). (68)

Proof. Since v is a concurrent vector field with respect to ∇̃, we have

X = ∇̃Xv = ∇̃XvT + ∇̃X( f N) (69)

for any X ∈ Γ(TM). Therefore, we get

X = ∇XvT + B(X, vT) + X( f )N − f AN X− f τ(X)N. (70)

From (69) and (70), we get the Equations (67) and (68) immediately.

Now we recall the following proposition of K. L. Duggal and A. Bejancu [17]:

Proposition 2. Let (M, g, S(TM)) be a lightlike hypersurface of a semi-Riemannian manifold. If
the Ricci tensor with respect to ∇ is symmetric, then there exists a pair {ξ, N} on U such that the
1-form τ vanishes.

Theorem 5. Let (M, g, S(TM)) be a totally geodesic lightlike hypersurface of a Lorentzian mani-
fold (M̃, g̃) admitting a concurrent vector v defined as (66). Then the function f is constant.

Proof. From (68), if (M, g, S(TM)) is totally geodesic, then we have

X( f ) = f τ(X), ∀X ∈ Γ(TM). (71)

Using the above equation, we get

[X, Y]( f ) = f (Y(τ(X))− X(τ(Y))) (72)
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for any X, Y ∈ Γ(TM). Considering Corollary 1 and Proposition 2, we get

[X, Y]( f ) = 0 ∀X, Y ∈ Γ(TM),

which indicates that f is constant.

Lemma 6. For any lightlike hypersurface (M, g, S(TM)) of a Lorentzian manifold (M̃, g̃) we have

(LvT g)(X, Y) = B(vT , X)η(Y) + B(vT , Y)η(X)

+ f g(AN X, Y) + f g(ANY, X) + g(X, Y) (73)

or equivalent to (73) we have

(LvT g)(X, Y) = (∇vT g)(X, Y)

+ f [g(AN X, Y) + g(ANY, X)] + 2g(X, Y) (74)

for any X, Y ∈ Γ(TM).

Proof. From (15) and (16), we get

(LvT g)(X, Y) = B(vT , X)η(Y) + B(vT , Y)η(X)

+g(∇XvT , Y) + g(∇YvT , X) (75)

or equivalently

(LvT g)(X, Y) = (∇vT g)(X, Y) + g(∇XvT , Y) + g(∇YvT , X). (76)

Using (66) and (67) in (75) and (76), we get (73) and (74) respectively.

If v lies on Γ(TM), that is, v = vT (or f = 0), then we have the following special result:

Lemma 7. Let (M, g, S(TM)) be a lightlike hypersurface of a Lorentzian manifold and v be a
concurrent vector field on Γ(TM). Then, for any X, Y ∈ Γ(TM), we have

(LvT g)(X, Y) = (∇vT g)(X, Y) + 2g(X, Y). (77)

Definition 2. A lightlike hypersurface (M, g, S(TM)) is called a Ricci soliton if the following
relation satisfies for any X, Y ∈ Γ(TM):

Lvg(X, Y) + 2R(0,2)(X, Y) = 2λg(X, Y), (78)

where λ is a constant. A Ricci soliton lightlike hypersurface is called shrinking if λ > 0, steady if
λ = 0, expanding if λ < 0.

Proposition 3. Let (M, g, S(TM)) be a Ricci soliton lightlike hypersurface with the potential
vector field vT . Then we have

2R(0,2)(X, Y) = 2λg(X, Y)− f [g(AN X, Y) + g(ANY, X)]− 2g(X, Y)

−(∇vT g)(X, Y) (79)

or, equivalently we have

R(0,2)(X, Y) = (λ− 1)g(X, Y)− f [g(AN X, Y) + g(ANY, X)]

−1
2
(∇vT g)(X, Y). (80)

for any X, Y ∈ Γ(TM).
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Proof. From the Equation (2), we have

(LvT g) + 2R(0,2) = 2λg. (81)

Considering Lemma 6 in (81), we get (79) and (80) respectively.

Now, we shall give an example of Ricci solition lightlike hypersurface (see Examples
4, 9 and 17 in [18]):

Example 1 (Lightlike cone). Let IR4
1 be the Minkowski space with signature (−,+,+,+) of the

canonical basis {∂x1, ∂x2, ∂x3, ∂x4} and M be a submanifold of R4
1 defined by

{(t, t cos u cos v, t cos u sin v, t sin u) : t > 0, u ∈ (0,
π

2
), v ∈ [0, 2π]}.

Then we have

∂u0 = ∂x1 + cos u cos v∂x2 + cos u sin v∂x3 + sin u∂x4,

N =
1
2
(−∂x1 + cos u cos v∂x2 + cos u sin v∂x3 + sin u∂x4)

∂u1 = t(− sin u cos v∂x2 − sin u sin v∂x3 + cos u∂x4)

∂u2 = t(
1

cos u
− cos u sin v∂x2 + cos u cos v∂x3),

where {u1, u2, u3} is the coordinate system on U ⊂ M such that Rad(TM) = Span{∂u0},
S(TM) = Span{∂u1, ∂u2} and tr(TM) = Span{N}. In this case, the matrix of induced metric g
on M with respect to the natural frame fields {∂u0, ∂u1, ∂u2} is as follows:

[g] =

 0 0 0
0 t2 0
0 0 t2 cos2 u

. (82)

Let us consider the another coordinate system {ū1, ū2, ū3} on Ū ⊂ M satisfying

∂ū0, ∂ū1 = t sin u ∂u0 + cos u ∂u1, ∂ū2 = t cos u ∂u2.

Using the equation (7.1.2) in [18], we have the local field of frames {∂u0, N, δu1 , δu2} of R4
1

such that the matrix of metric on R4
1 satisfies
0 1 0 0
1 0 0 0
0 0 t2 0
0 0 0 t2 cos2 u

.

Then, the Ricci tensor is symmetric and

R(0,2)(δu1 , δu1) = −
1
2

, R(0,2)(δu1 , δu2) = 0, R(0,2)(δu2 , δu2) = −
1
2

cos2 u,

R(0,2)(δu0 , δu0) = R(0,2)(δu0 , δu1) = R(0,2)(δu0 , δu2) = 0.

If we consider the position vector v = tξ of (M, g, S(TM), we see that v is concurrent for
M. From the above equations and (81), we get (M, g, S(TM)) is a expanding Ricci soliton with
λ = − 1

2 , where v is the potential concurrent vector.

Now we shall give the following lemma for later use:
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Lemma 8. Let (M, g, S(TM)) be an (n + 1)-dimensional lightlike hypersurface of the semi-
Euclidean space IRn+2

q . Then

R(0,2)(X, Y) = n traceAN B(X, Y)− B(AN X, Y) (83)

for any X, Y ∈ Γ(TM).

Proof. Let {e1, . . . , en, ξ} be a basis of M such that Span = {e1, . . . , en} is an orthonormal
basis on Γ(S(TM)). Using the fact that M̃ = IRn+2

q is the semi-Euclidean space and
from (18), we have

R(X, Y)Z = B(Y, Z)AN X− B(X, Z)ANY

for any X, Y, Z ∈ Γ(TM). Furthermore, we get

Ric(X, Y) =
m

∑
i=1

εig(R(eiX)Y, ei) + g̃(R(ξ, X)Y, N).

Therefore, we have

R(ei, X)Y = B(X, Y)ANei − B(ei, Y)AN X

and putting X = ξ, we have

R(ξ, X)Y = B(X, Y)ANξ.

Thus, we get

g̃(R(ξ, X)Y, N) = B(X, Y)g(ANξ, N) = 0.

So we obtain

R(0,2)(X, Y) =
n

∑
i=1

εiB(X, Y)g(ANei, ei)−
m

∑
i=1

εiB(g(AN X, ei)ei, Y)

= B(X, Y)n.traceAN − B

(
n

∑
i=1

εig(AN X, ei)ei, Y

)
= B(X, Y)n.traceAN − B(AN X, Y), (84)

which completes the proof of the lemma.

Proposition 4. Let (M, g, S(TM)) be an (n+ 1)−dimensional Ricci soliton lightlike hypersurface
of the semi-Euclidean space IRn+2

q admitting a potential vector field v. For any unit vector field
X ∈ Γ(S(TM)), we have

n B(X, X) traceAN − B(AN X, X) = λ− 1− 2 f [g(AN X, X)]. (85)

Proof. Suppose that {e1, . . . , en} be an orthonormal basis of Γ(S(TM)). From (83), we
see that

R(0,2)(ei, ei) = n.B(ei, ei).traceAN − B(ANei, ei). (86)

Using (86) in (80) and putting X = ei, the proof of proposition is straightforward.
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Corollary 9. Let (M, g, S(TM)) be an (n + 1)−dimensional Ricci soliton lightlike hypersurface
of the semi-Euclidean space IRn+2

q admitting a potential vector field v. If (M, g, S(TM)) is totally
umbilical and screen conformal with conformal factor ϕ then we have

n2[B(X, X)]2 ϕ− [B(X, X)]2 = λ− 1− 2 f B(X, X) (87)

for any unit vector field X ∈ Γ(S(TM)).

Remark 2. In the Equation (87), we obtain a second order equation. Furthermore, there exists a
unique solution of this equation. If we compute the discriminant ∆ = 0, we get

f 2 = (1− λ)(ϕn2 − 1). (88)

Corollary 10. Let (M, g, S(TM)) be screen conformal totally umbilical lightlike hypersurface of
the semi-Euclidean space IRn+2

q . If M is a steady Ricci soliton, then the concurrent vector field v
lies on Γ(TM).

Now, we shall investigate to the Ricci soliton equation for lightlike hypersurface
(M, g, S(TM)) admitting a concurrent vector field which lies on Γ(TM).

Proposition 5. Let (M, g, S(TM)) be a Ricci soliton lightlike hypersurface of a Lorenzian manifold
(M̃, g̃) admitting a concurrent vector field v on Γ(TM). Then, for any X, Y ∈ Γ(TM), we have

R(0,2)(X, Y) = (λ− 1) g(X, Y)− 1
2
[B(v, X)η(Y) + B(v, Y)η(X)]. (89)

Proof. Since v lies on Γ(TM) and (M, g, S(TM)) is a Ricci soliton, we write from (2) that

(Lvg) + 2R(0,2) = 2λg. (90)

Using the assumption that v is a concurrent vector field on Γ(TM), we have from
Lemma 7 that

(Lvg)(X, Y) = (∇vg)(X, Y) + 2g(X, Y) (91)

for any X, Y ∈ Γ(TM). Using (90) and (91), we obtain

R(0,2)(X, Y) = (λ− 1)g(X, Y)− 1
2
(∇vg)(X, Y). (92)

From (15) and (92), the proof of proposition is straightforward.

Now, suppose that {e1, . . . , en, ξ} be a basis on Γ(TM) and {e1, . . . , en} be an orthonor-
mal basis of Γ(S(TM)). Then we have

R(0,2)(ei, ej) = (λ− 1)− 1
2
[B(v, ei)η(ei) + B(v, ei)η(ei)]

= (λ− 1) δij, (93)

where δij is the Kronecker delta and i, j ∈ {1, . . . , n}. Putting X = Y = ξ in (89), then
we get

R(0,2)(ξ, ξ) = (λ− 1)− 1
2
[B(v, ξ)η(ξ) + B(v, ξ)η(ξ)]

= λ− 1. (94)

Considering (93) and (94), we obtain the following corollary:
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Corollary 11. Let (M, g, S(TM)) be a lightlike hypersurface and v be the concurrent vector field
on Γ(TM). The manifold (M, g, S(TM)) is a Ricci soliton if and only if it is an Einstein lightlike
hypersurface.

Now we recall the following theorem dealing screen homothetic lightlike hypersur-
faces of C. Atindogbe, J.-P. Ezin, J. Tossa [24]:

Theorem 6. Let (M, g, S(TM)) be a screen homothetic lightlike hypersurface of a Lorentzian space
form (M̃, g̃), c ≥ 0. If M is Einstein, that is R(0,2) = γ g, (γ is constant), then γ is non-negative.

From (93) and (94) and Theorem 6, we obtain the following corollary:

Corollary 12. Let (M, g, S(TM)) be a screen homothetic lightlike hypersurface of a a Lorentzian
space form. If M is a Ricci soliton, then M is shrinking with λ ≥ 1.
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