Computational Modeling and Simulation to Increase Laser Shooting Accuracy of Autonomous LEO Trackers

Gambi, Jose and Garcia del Pino, Maria and Mosser, Jonathan and Weinmüller, Ewa (2021) Computational Modeling and Simulation to Increase Laser Shooting Accuracy of Autonomous LEO Trackers. Photonics, 8 (2). p. 55. ISSN 2304-6732

[thumbnail of photonics-08-00055-v2.pdf] Text
photonics-08-00055-v2.pdf - Published Version

Download (1MB)

Abstract

In this paper, we introduce a computational procedure that enables autonomous LEO laser trackers endowed with INSs to increase the current accuracy when shooting at middle distant medium-size LEO debris targets. The code is designed for the trackers to throw the targets into the atmosphere by means of ablations. In case that the targets are eclipsed to the trackers by the Earth, the motions of the trackers and targets are modeled by equations that contain post-Newtonian terms accounting for the curvature of space. Otherwise, when the approaching targets become visible for the trackers, we additionally use more accurate equations, which allow to account for the local bending of the laser beams aimed at the targets. We observe that under certain circumstances the correct shooting configurations that allow to safely and efficiently shoot down the targets, differ from the current estimations by distances that may be larger than the size of many targets. In short, this procedure enables to estimate the optimal shooting instants for any middle distant medium-size LEO debris target.

Item Type: Article
Uncontrolled Keywords: autonomous LEO trackers; debris targets; laser ablation; Earth post-Newtonian framework
Subjects: STM Repository > Multidisciplinary
Depositing User: Managing Editor
Date Deposited: 09 Jan 2024 05:00
Last Modified: 09 Jan 2024 05:00
URI: http://classical.goforpromo.com/id/eprint/1423

Actions (login required)

View Item
View Item