Cueva-López, Valentina and Olmo-Jiménez, María José and Rodríguez-Avi, José (2021) An Over and Underdispersed Biparametric Extension of the Waring Distribution. Mathematics, 9 (2). p. 170. ISSN 2227-7390
mathematics-09-00170.pdf - Published Version
Download (484kB)
Abstract
A new discrete distribution for count data called extended biparametric Waring (EBW) distribution is developed. Its name is related to the fact that, in a specific configuration of its parameters, it can be seen as a biparametric version of the univariate generalized Waring (UGW) distribution, a well-known model for the variance decomposition into three components: randomness, liability and proneness. Unlike the UGW distribution, the EBW can model both overdispersed and underdispersed data sets. In fact, the EBW distribution is a particular case of a UWG distribution when its first parameter is positive; otherwise, it is a particular case of a Complex Triparametric Pearson (CTP) distribution. Hence, this new model inherits most of their properties and, moreover, it helps to solve the identification problem in the variance components of the UGW model. We compare the EBW with the UGW by a simulation study, but also with other over and underdispersed distributions through the Kullback-Leibler divergence. Additionally, we have carried out a simulation study in order to analyse the properties of the maximum likelihood parameter estimates. Finally, some application examples are included which show that the proposed model provides similar or even better results than other models, but with fewer parameters.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | count data distribution; goodness of fit; overdispersion; underdispersion |
Subjects: | STM Repository > Mathematical Science |
Depositing User: | Managing Editor |
Date Deposited: | 04 Jul 2023 04:05 |
Last Modified: | 24 Oct 2024 04:00 |
URI: | http://classical.goforpromo.com/id/eprint/1622 |