Principal Components Analysis of EEG Signals for Epileptic Patient Identification

Guerrero, Maria Camila and Parada, Juan Sebastián and Espitia, Helbert Eduardo (2021) Principal Components Analysis of EEG Signals for Epileptic Patient Identification. Computation, 9 (12). p. 133. ISSN 2079-3197

[thumbnail of computation-09-00133.pdf] Text
computation-09-00133.pdf - Published Version

Download (1MB)

Abstract

According to the behavior of its neuronal connections, it is possible to determine if the brain suffers from abnormalities such as epilepsy. This disease produces seizures and alters the patient’s behavior and lifestyle. Neurologists employ the electroencephalogram (EEG) to diagnose the disease through brain signals. Neurologists visually analyze these signals, recognizing patterns, to identify some indication of brain disorder that allows for the epilepsy diagnosis. This article proposes a study, based on the Fourier analysis, through fast Fourier transformation and principal component analysis, to quantitatively identify patterns to diagnose and differentiate between healthy patients and those with the disease. Subsequently, principal component analysis can be used to classify patients, employing frequency bands as the signal features. Besides, it is made a classification comparison before and after using principal component analysis. The classification is performed via logistic regression, with a reduction from 5 to 4 dimensions, as well as from 8 to 7, achieving an improvement when there are 7 dimensions in the precision, recall, and F1 score metrics. The best results obtained, without PCA are: precision 0.560, recall 0.690, and F1 score 0.620; meanwhile, the best values obtained using PCA are: precision 0.734, recall 0.787, and F1 score 0.776.

Item Type: Article
Subjects: STM Repository > Computer Science
Depositing User: Managing Editor
Date Deposited: 19 Apr 2023 05:00
Last Modified: 07 Nov 2024 10:17
URI: http://classical.goforpromo.com/id/eprint/1771

Actions (login required)

View Item
View Item