Chalcones identify cTXNPx as a potential antileishmanial drug target

Donatelli Serafim, Tiago and Escrivani, Douglas O. and Charlton, Rebecca L. and Caruso, Marjolly B. and Burle-Caldas, Gabriela A. and Borsodi, Maria Paula G. and Zingali, Russolina B. and Arruda-Costa, Natalia and Palmeira-Mello, Marcos V. and de Jesus, Jéssica B. and Souza, Alessandra M. T. and Abrahim-Vieira, Bárbara and Freitag-Pohl, Stefanie and Pohl, Ehmke and Denny, Paul W. and Rossi-Bergmann, Bartira and Steel, Patrick G. (2021) Chalcones identify cTXNPx as a potential antileishmanial drug target. PLOS Neglected Tropical Diseases, 15 (11). e0009951. ISSN 1935-2735

[thumbnail of journal.pntd.0009951.pdf] Text
journal.pntd.0009951.pdf - Published Version

Download (3MB)

Abstract

With current drug treatments failing due to toxicity, low efficacy and resistance; leishmaniasis is a major global health challenge that desperately needs new validated drug targets. Inspired by activity of the natural chalcone 2’,6’-dihydroxy-4’-methoxychalcone (DMC), the nitro-analogue, 3-nitro-2’,4’,6’- trimethoxychalcone (NAT22, 1c) was identified as potent broad spectrum antileishmanial drug lead. Structural modification provided an alkyne containing chemical probe that labelled a protein within the parasite that was confirmed as cytosolic tryparedoxin peroxidase (cTXNPx). Crucially, labelling is observed in both promastigote and intramacrophage amastigote life forms, with no evidence of host macrophage toxicity. Incubation of the chalcone in the parasite leads to ROS accumulation and parasite death. Deletion of cTXNPx, by CRISPR-Cas9, dramatically impacts upon the parasite phenotype and reduces the antileishmanial activity of the chalcone analogue. Molecular docking studies with a homology model of in-silico cTXNPx suggest that the chalcone is able to bind in the putative active site hindering access to the crucial cysteine residue. Collectively, this work identifies cTXNPx as an important target for antileishmanial chalcones.

Item Type: Article
Subjects: STM Repository > Biological Science
Depositing User: Managing Editor
Date Deposited: 05 Dec 2022 09:08
Last Modified: 25 Nov 2024 08:24
URI: http://classical.goforpromo.com/id/eprint/1959

Actions (login required)

View Item
View Item