Exact Boolean Abstraction of Linear Equation Systems

Allart, Emilie and Niehren, Joachim and Versari, Cristian (2021) Exact Boolean Abstraction of Linear Equation Systems. Computation, 9 (11). p. 113. ISSN 2079-3197

[thumbnail of computation-09-00113-v2.pdf] Text
computation-09-00113-v2.pdf - Published Version

Download (768kB)

Abstract

We study the problem of how to compute the boolean abstraction of the solution set of a linear equation system over the positive reals. We call a linear equation system ϕ exact for the boolean abstraction if the abstract interpretation of ϕ over the structure of booleans is equal to the boolean abstraction of the solution set of ϕ over the positive reals. Abstract interpretation over the booleans is thus complete for the boolean abstraction when restricted to exact linear equation systems, while it is not complete more generally. We present a new rewriting algorithm that makes linear equation systems exact for the boolean abstraction while preserving the solutions over the positive reals. The rewriting algorithm is based on the elementary modes of the linear equation system. The computation of the elementary modes may require exponential time in the worst case, but is often feasible in practice with freely available tools. For exact linear equation systems, we can compute the boolean abstraction by finite domain constraint programming. This yields a solution of the initial problem that is often feasible in practice. Our exact rewriting algorithm has two further applications. Firstly, it can be used to compute the sign abstraction of linear equation systems over the reals, as needed for analyzing function programs with linear arithmetics. Secondly, it can be applied to compute the difference abstraction of a linear equation system as used in change prediction algorithms for flux networks in systems biology.

Item Type: Article
Subjects: STM Repository > Computer Science
Depositing User: Managing Editor
Date Deposited: 20 Jan 2023 06:52
Last Modified: 23 Oct 2024 04:02
URI: http://classical.goforpromo.com/id/eprint/2052

Actions (login required)

View Item
View Item