Genomic prediction using low-coverage portable Nanopore sequencing

Lamb, Harrison J. and Hayes, Ben J. and Randhawa, Imtiaz A. S. and Nguyen, Loan T. and Ross, Elizabeth M. and Feltus, F. Alex (2021) Genomic prediction using low-coverage portable Nanopore sequencing. PLOS ONE, 16 (12). e0261274. ISSN 1932-6203

[thumbnail of journal.pone.0261274.pdf] Text
journal.pone.0261274.pdf - Published Version

Download (2MB)

Abstract

Most traits in livestock, crops and humans are polygenic, that is, a large number of loci contribute to genetic variation. Effects at these loci lie along a continuum ranging from common low-effect to rare high-effect variants that cumulatively contribute to the overall phenotype. Statistical methods to calculate the effect of these loci have been developed and can be used to predict phenotypes in new individuals. In agriculture, these methods are used to select superior individuals using genomic breeding values; in humans these methods are used to quantitatively measure an individual’s disease risk, termed polygenic risk scores. Both fields typically use SNP array genotypes for the analysis. Recently, genotyping-by-sequencing has become popular, due to lower cost and greater genome coverage (including structural variants). Oxford Nanopore Technologies’ (ONT) portable sequencers have the potential to combine the benefits genotyping-by-sequencing with portability and decreased turn-around time. This introduces the potential for in-house clinical genetic disease risk screening in humans or calculating genomic breeding values on-farm in agriculture. Here we demonstrate the potential of the later by calculating genomic breeding values for four traits in cattle using low-coverage ONT sequence data and comparing these breeding values to breeding values calculated from SNP arrays. At sequencing coverages between 2X and 4X the correlation between ONT breeding values and SNP array-based breeding values was > 0.92 when imputation was used and > 0.88 when no imputation was used. With an average sequencing coverage of 0.5x the correlation between the two methods was between 0.85 and 0.92 using imputation, depending on the trait. This suggests that ONT sequencing has potential for in clinic or on-farm genomic prediction, however, further work to validate these findings in a larger population still remains.

Item Type: Article
Subjects: STM Repository > Biological Science
Depositing User: Managing Editor
Date Deposited: 24 Mar 2023 07:16
Last Modified: 22 Jun 2024 08:05
URI: http://classical.goforpromo.com/id/eprint/2351

Actions (login required)

View Item
View Item