Analysis of Structural Response of Subway Shield Tunnel Lining under the Influence of Cavities

Shi, Yufeng and Chen, Zhaoyang and Wei, Duqiang and Zhang, Tao and Zhou, Xuming and Zhao, Xiushao and Hu, Junhao and Zhou, Yuhang and Valvo, Paolo S. (2021) Analysis of Structural Response of Subway Shield Tunnel Lining under the Influence of Cavities. Advances in Civil Engineering, 2021. pp. 1-21. ISSN 1687-8086

[thumbnail of 3326595.pdf] Text
3326595.pdf - Published Version

Download (5MB)

Abstract

The existence of cavities behind the shield tunnel lining can cause cracking, broken pieces, water leakage, and other problems, which reduces the durability and safety of the shield tunnel segment structure. In order to clarify the mechanism of cavity damage, a more systematic study of the effects of cavities on the shield tunnel lining structure from the angle, depth, and the number of cavities is carried out using model tests and numerical simulations without considering the effects of the stiffness reduction effect at the tunnel segment joints and groundwater seepage in this paper. The findings show that the bending moment value and the cavity angle value are approximately linear with the increase of single cavity angle, and the bending moment at the vault arch is reversed when the angle of the cavity behind the arch is greater than 30°. With the increase of single cavity depth, the axial force and bending moment at the cavity increase, and the distribution of bending moment remains unchanged, and the bending moment tends to be stable and unchanged beyond a certain depth. With the increase of single cavity angle and depth, the structural safety coefficient of the segment decreases, and the degree of influence is angle value > depth value. The existence of multiple cavities intensifies the influence of each cavity on the segment, especially when there are cavities behind the top and bottom of the vault; the bending moment value of the top of the vault increases by 22.53% compared with that of the single cavity condition.

Item Type: Article
Subjects: STM Repository > Agricultural and Food Science
Depositing User: Managing Editor
Date Deposited: 05 Jan 2023 07:13
Last Modified: 08 Mar 2024 04:26
URI: http://classical.goforpromo.com/id/eprint/315

Actions (login required)

View Item
View Item