Fabrication of Xanthan Gum: Gelatin (Xnt:Gel) Hybrid Composite Hydrogels for Investigating Skin Wound Healing Efficacy

Shawan, Mohammad Mahfuz Ali Khan and Islam, Nazmul and Aziz, Shahin and Khatun, Nazia and Sarker, Satya Ranjan and Hossain, Mozammel and Hossan, Tareq and Morshed, Mahbubul and Sarkar, Marzan and Shakil, Md. Salman and Rahman, Md. Nazibur and Begum, Most. Hosney Ara and Hasan, Md. Ashraful (2021) Fabrication of Xanthan Gum: Gelatin (Xnt:Gel) Hybrid Composite Hydrogels for Investigating Skin Wound Healing Efficacy. In: Current Advances in Chemistry and Biochemistry Vol. 9. B P International, pp. 130-143. ISBN 978-93-91312-28-2

Full text not available from this repository.

Abstract

Fabrication of hybrid hydrogels to improve biological properties or to decrease the disadvantages of biomaterials has been a popular approach. With the background of snowballing threat of skin wound to public health and economy, this study was undertaken utilizing xanthan gum (Xnt), citric acid (C), gelatin (Gel), glutaraldehyde (G) and HPLC-grade water to fabricate a series of composite hydrogels i.e. Xnt, Xnt:C, Xnt:Gel(3):G, Xnt:C:Gel(3):G, Xnt:Gel(5):G, Xnt:C:Gel(5):G for investigating their wound healing efficacy in experimental rat skin wound model. Physicochemical characterization revealed that all the composite hydrogels contained more than 90% water. The hydrogels displayed swelling ability, biodegradability, good polymeric networks and porosity. Fourier Transform Infrared Spectroscopy (FT-IR) studies confirmed the presence of bound water and free, intra and inter molecular bound hydrogen bonded OH and NH in the hydrogels. All the hydrogels showed significant wound healing potency in experimental deep second degree skin burns in rats compared to controls. 20 days post-application of hydrogels, Xnt:Gel(3):G, Xnt:Gel(5):G and Xnt:C:Gel(5):G-treated wounds showed better recovery compared to other composite hydrogels. The highest wound contraction of these hydrogel composites might be due to presence of Gel in the formulations. We conclude that, Xnt:Gel(3):G, Xnt:Gel(5):G and Xnt:C:Gel(5):G might be effective wound dressing material.

Item Type: Book Section
Subjects: STM Repository > Biological Science
Depositing User: Managing Editor
Date Deposited: 26 Oct 2023 04:12
Last Modified: 26 Oct 2023 04:12
URI: http://classical.goforpromo.com/id/eprint/4366

Actions (login required)

View Item
View Item