Who Will Score? A Machine Learning Approach to Supporting Football Team Building and Transfers

Ćwiklinski, Bartosz and Giełczyk, Agata and Choraś, Michał (2021) Who Will Score? A Machine Learning Approach to Supporting Football Team Building and Transfers. Entropy, 23 (1). p. 90. ISSN 1099-4300

[thumbnail of entropy-23-00090-v3.pdf] Text
entropy-23-00090-v3.pdf - Published Version

Download (500kB)

Abstract

Background: the machine learning (ML) techniques have been implemented in numerous applications, including health-care, security, entertainment, and sports. In this article, we present how the ML can be used for building a professional football team and planning player transfers. Methods: in this research, we defined numerous parameters for player assessment, and three definitions of a successful transfer. We used the Random Forest, Naive Bayes, and AdaBoost algorithms in order to predict the player transfer success. We used realistic, publicly available data in order to train and test the classifiers. Results: in the article, we present numerous experiments; they differ in the weights of parameters, the successful transfer definitions, and other factors. We report promising results (accuracy = 0.82, precision = 0.84, recall = 0.82, and F1-score = 0.83). Conclusion: the presented research proves that machine learning can be helpful in professional football team building. The proposed algorithm will be developed in the future and it may be implemented as a professional tool for football talent scouts. View Full-Text

Item Type: Article
Uncontrolled Keywords: machine learning; big data; football support; sports analytics
Subjects: STM Repository > Physics and Astronomy
Depositing User: Managing Editor
Date Deposited: 25 Mar 2023 12:53
Last Modified: 22 May 2024 08:59
URI: http://classical.goforpromo.com/id/eprint/462

Actions (login required)

View Item
View Item