Transport Efficiency of Continuous-Time Quantum Walks on Graphs

Razzoli, Luca and Paris, Matteo G. A. and Bordone, Paolo (2021) Transport Efficiency of Continuous-Time Quantum Walks on Graphs. Entropy, 23 (1). p. 85. ISSN 1099-4300

[thumbnail of entropy-23-00085-v2.pdf] Text
entropy-23-00085-v2.pdf - Published Version

Download (624kB)

Abstract

Continuous-time quantum walk describes the propagation of a quantum particle (or an excitation) evolving continuously in time on a graph. As such, it provides a natural framework for modeling transport processes, e.g., in light-harvesting systems. In particular, the transport properties strongly depend on the initial state and specific features of the graph under investigation. In this paper, we address the role of graph topology, and investigate the transport properties of graphs with different regularity, symmetry, and connectivity. We neglect disorder and decoherence, and assume a single trap vertex that is accountable for the loss processes. In particular, for each graph, we analytically determine the subspace of states having maximum transport efficiency. Our results provide a set of benchmarks for environment-assisted quantum transport, and suggest that connectivity is a poor indicator for transport efficiency. Indeed, we observe some specific correlations between transport efficiency and connectivity for certain graphs, but, in general, they are uncorrelated. View Full-Text

Item Type: Article
Uncontrolled Keywords: transport on graph; quantum walk; transport efficiency; connectivity
Subjects: STM Repository > Physics and Astronomy
Depositing User: Managing Editor
Date Deposited: 25 Mar 2023 12:53
Last Modified: 19 Jul 2024 06:54
URI: http://classical.goforpromo.com/id/eprint/467

Actions (login required)

View Item
View Item