Light Scattering and Rheological Studies of 3D/4D Printable Shape Memory Gels Based on Poly (N,N-Dimethylacrylamide-co-Stearyl Acrylate and/or Lauryl Acrylates)

Shiblee, MD Nahin Islam and Ahmed, Kumkum and Yamazaki, Yuta and Kawakami, Masaru and Furukawa, Hidemitsu (2020) Light Scattering and Rheological Studies of 3D/4D Printable Shape Memory Gels Based on Poly (N,N-Dimethylacrylamide-co-Stearyl Acrylate and/or Lauryl Acrylates). Polymers, 13 (1). p. 128. ISSN 2073-4360

[thumbnail of polymers-13-00128-v2.pdf] Text
polymers-13-00128-v2.pdf - Published Version

Download (3MB)

Abstract

In this work, we present the structural analysis of 3D/4D printable N,N-dimethylacrylamide (DMAAm)-co-stearyl acrylate (SA) and/or lauryl acrylate (LA)-based shape memory gels (SMGs). We characterized these gels by scanning microscopic light scattering technique (SMILS) where a time- and space-averaged correlation function is obtained to overcome the inhomogeneous media. Thus, the characteristic size of the gel internal network (mesh size, ξ) and crosslinking densities are estimated from the Einstein–Stokes formula. The rheological study of the SMGs revealed information about their mechanical strength and transition temperature. From the experimental storage modulus measured by rheological study, crosslinking density and mesh size of the network were also calculated. Both the techniques suggest that SMG with high crystalline content of SA monomer in the gel network contain smaller mesh size (1.13 nm for SMILS and 9.5 nm for rheology study) and high crosslinking density. The comparative study between the light scattering technique and rheological analysis through the quantitative analysis of crosslinking densities will be important to understand the structural properties of the SMGs.

Item Type: Article
Uncontrolled Keywords: shape memory polymers; 3D/4D printing; light scattering; rheology
Subjects: STM Repository > Chemical Science
Depositing User: Managing Editor
Date Deposited: 06 Apr 2023 04:48
Last Modified: 01 Aug 2024 06:57
URI: http://classical.goforpromo.com/id/eprint/788

Actions (login required)

View Item
View Item