Moreira, Luana Lavagnoli and de Brito, Mariana Madruga and Kobiyama, Masato (2021) Effects of Different Normalization, Aggregation, and Classification Methods on the Construction of Flood Vulnerability Indexes. Water, 13 (1). p. 98. ISSN 2073-4441
water-13-00098-v3.pdf - Published Version
Download (4MB)
Abstract
Index-based approaches are widely employed for measuring flood vulnerability. Nevertheless, the uncertainties in the index construction are rarely considered. Here, we conducted a sensitivity analysis of a flood vulnerability index in the Maquiné Basin, Southern Brazil, considering distinct normalization, aggregation, classification methods, and their effects on the model outputs. The robustness of the results was investigated by considering Spearman’s correlations, the shift in the vulnerability rank, and spatial analysis of different normalization techniques (min-max, z-scores, distance to target, and raking) and aggregation methods (linear and geometric). The final outputs were classified into vulnerability classes using natural breaks, equal interval, quantiles, and standard deviation methods. The performance of each classification method was evaluated by spatial analysis and the Akaike’s information criterion (AIC). The results presented low sensitivity regarding the normalization step. Conversely, the geometric aggregation method produced substantial differences on the spatial vulnerability and tended to underestimate the vulnerability where indicators with low values compensated for high values. Additionally, the classification of the vulnerability into different classes led to overly sensitive outputs. Thus, given the AIC performance, the natural breaks method was most suitable. The obtained results can support decision-makers in reducing uncertainty and increasing the quality of flood vulnerability assessments.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | aggregation; classification; composite indicators; flood vulnerability; normalization |
Subjects: | STM Repository > Biological Science |
Depositing User: | Managing Editor |
Date Deposited: | 03 Apr 2023 05:59 |
Last Modified: | 12 Aug 2024 10:15 |
URI: | http://classical.goforpromo.com/id/eprint/799 |