Relative Performance of 1-D Versus 3-D Hydrodynamic, Water-Quality Models for Predicting Water Temperature and Oxygen in a Shallow, Eutrophic, Managed Reservoir

Man, Xiamei and Lei, Chengwang and Carey, Cayelan C. and Little, John C. (2021) Relative Performance of 1-D Versus 3-D Hydrodynamic, Water-Quality Models for Predicting Water Temperature and Oxygen in a Shallow, Eutrophic, Managed Reservoir. Water, 13 (1). p. 88. ISSN 2073-4441

[thumbnail of water-13-00088.pdf] Text
water-13-00088.pdf - Published Version

Download (2MB)

Abstract

Many researchers use one-dimensional (1-D) and three-dimensional (3-D) coupled hydrodynamic and water-quality models to simulate water quality dynamics, but direct comparison of their relative performance is rare. Such comparisons may quantify their relative advantages, which can inform best practices. In this study, we compare two 1-year simulations in a shallow, eutrophic, managed reservoir using a community-developed 1-D model and a 3-D model coupled with the same water-quality model library based on multiple evaluation criteria. In addition, a verified bubble plume model is coupled with the 1-D and 3-D models to simulate the water temperature in four epilimnion mixing periods to further quantify the relative performance of the 1-D and 3-D models. Based on the present investigation, adopting a 1-D water-quality model to calibrate a 3-D model is time-efficient and can produce reasonable results; 3-D models are recommended for simulating thermal stratification and management interventions, whereas 1-D models may be more appropriate for simpler model setups, especially if field data needed for 3-D modeling are lacking.

Item Type: Article
Uncontrolled Keywords: hydrodynamic model; bubble plume; artificial mixing; GLM; Si3D
Subjects: STM Repository > Biological Science
Depositing User: Managing Editor
Date Deposited: 28 Jan 2023 07:02
Last Modified: 01 Aug 2024 06:57
URI: http://classical.goforpromo.com/id/eprint/812

Actions (login required)

View Item
View Item